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LTLDoG: Satisfying Temporally-Extended Symbolic
Constraints for Safe Diffusion-based Planning

Zeyu Feng†1, Hao Luan†1, Pranav Goyal1, and Harold Soh1,2

Abstract—Operating effectively in complex environments while
complying with specified constraints is crucial for the safe and
successful deployment of robots that interact with and operate
around people. In this work, we focus on generating long-
horizon trajectories that adhere to static and temporally-extended
constraints/instructions at test time. We propose a data-driven
diffusion-based framework, LTLDOG, that modifies the infer-
ence steps of the reverse process given an instruction specified
using finite linear temporal logic (LTLf ). LTLDOG leverages a
satisfaction value function on LTLf and guides the sampling steps
using its gradient field. This value function can also be trained
to generalize to new instructions not observed during training,
enabling flexible test-time adaptability. Experiments in robot
navigation and manipulation illustrate that the method is able to
generate trajectories that satisfy formulae that specify obstacle
avoidance and visitation sequences. Code and supplementary ma-
terial are available online at https://github.com/clear-nus/ltldog.

Index Terms—Robot Safety, Machine Learning for Robot
Control, Imitation Learning, Hybrid Logical/Dynamical Planning
and Verification

I. INTRODUCTION

Recent methodologies [1]–[3] utilizing data-driven diffusion
models [4]–[6] have shown remarkable performance in gen-
erating robot behaviors across a wide range of tasks. Thanks
to their ability to model complex distributions, these methods
have surpassed several leading offline reinforcement learning
techniques and classical model-based trajectory optimization
methods, especially in long-horizon decision-making tasks [1],
[3]. However, while conventional diffusion models excel at
learning from training datasets, they lack the ability to adapt to
new objectives or comply with new constraints during deploy-
ment. This shortcoming can lead to unsafe behaviors, posing
risks to humans, robots, and their surrounding environment.
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Fig. 1. We present LTLDOG, a diffusion-based planning framework for
generating trajectories that comply with specified LTLf formulae. In the
example above, a robot dog is tasked to arrive at the goal position (A), but
first has to visit B and avoid obstacles (crosses).

In view of this limitation, there has been very recent work on
diffusing safe trajectories. Xiao et al. [7] integrated a dynamics
model into the denoising diffusion process and incorporated
a class of Control Barrier Functions (CBF) to meet safety
criteria. Botteghi et al. [8] approached the issue by embedding
both safety and reward considerations into a constrained
optimization framework, employing CBF constraints as labels
for classifier guidance. However, these approaches primarily
address static environmental constraints. For example, while
they can maneuver around obstacles on a local scale, they fail
to comply with more complex temporally-extended directives
such as “avoid the kitchen until you are clean”.

In this work, we propose an alternative approach to flexible
trajectory planning with diffusion models that is designed
to satisfy both static safety requirements and temporal con-
straints. The core idea is to plan with diffusion models to
satisfy finite linear temporal logic (LTLf ) formulae [9]. LTLf

offers the ability to define a broad spectrum of instruc-
tions/constraints that might emerge during deployment. For
example, LTLf can describe a visitation order of different
objects and locations. The use of propositional logic operators,
such as not, facilitates the delineation of safe regions within
the state space.

We develop LTLDOG (LTL Diffusion-orienting Guidance,
pronounced “Little Dog”), a posterior-sampling based diffu-
sion framework that accommodates finite LTL formulae at test
time. We present two variants of LTLDOG: our main method,

https://github.com/clear-nus/ltldog
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LTLDOG-S, can be applied to the generation of finite-length
trajectory in robot tasks where the labeling function for
propositional events is differentiable. LTLDOG-S employs
a differentiable formula checker in conditional sampling —
specifically, we modify the reverse process to condition upon
the criteria that the final (predicted) trajectory satisfies a given
LTLf formula. For when a differentiable labeling function is
unavailable, we propose LTLDOG-R, which uses a trained
LTLf neural-symbolic evaluator for posterior sampling. No-
tably, both variants do not require collecting expert demon-
strations for every potential LTLf instruction. They retain
the temporal compositionality and local consistency properties
associated with diffusion models [1] — as long as the dataset
contains a diverse set of paths, they can potentially “stitch
together” snippets of trajectories from the training data to
generate plans for similar, but unseen, LTLf formulae.

Experiments on two benchmark environments (long-horizon
planning for navigation and policy learning for manipulation)
demonstrate that LTLDOG is able to generate trajectories that
satisfy feasible safety and temporal constraints. We find that
our methods possess the ability to re-plan alternative paths
at a high-level based on given instruction. Moreover, real
robot experiments show that the generated trajectories can be
successfully transferred to a quadruped robot. In summary, this
paper makes three key contributions:

• A conditional trajectory sampling approach designed for
LTLf instructions that leverages pre-trained diffusion
models;

• A regressor-guidance neural network for diffusion that
generalizes to novel LTLf formulae within a given tem-
plate structure;

• Experimental results on benchmark problems and real
world demonstrations that validate the effectiveness of
planning with safety and temporal constraints.

From a broader perspective, LTLDOG is the first method that
fuses symbolic model checking (using LTLf ) with expressive
diffusion-based generative models. We hope our results lays
the groundwork towards performant, yet safer and more trust-
worthy robots.

II. PRELIMINARIES AND NOTATION

In this work, our focus is to extend diffusion-based planning
methods towards generating trajectories that comply with spec-
ified LTLf formulae. Here, we provide a concise introduction
to diffusion methods in the context of planning and finite linear
temporal logic.

A. Planning with Diffusion

Many tasks in planning, reinforcement learning, and im-
itation learning require generating trajectories under some
specific objective. Let S and A denote the state and action
space, respectively. We use τ = (s0,a0, s1,a1, . . . , sT ,aT )
to refer to a trajectory, where T is the planning horizon. The
environment transitions to a new state st+1 when an agent
executes action at at state st. Let the abbreviation J (τ |g)
denote the objective value function conditioned on a goal
state where the trajectory must terminate at, for example,

(discounted) cumulative rewards in reinforcement learning,
cumulative error of actions in imitation learning, or cost for
safety constraints.

Diffusion-based planning methods directly generate partial
or entire trajectories by using diffusion models pre-trained on
a dataset of trajectories. Let p0

(
τ 0

)
denote the distribution

of trajectories in dataset, where τ 0 represents a noiseless
trajectory. Given an N -step discrete approximation of forward
diffusion process p

(
τ i|τ i−1

)
that slowly corrupts data by

adding prespecified noise, diffusion models learn an iterative
denoising procedure by approximating the score function
∇τ i log pi

(
τ i
)

using a step-dependent neural network sθ
trained with denoising score matching [10]:

θ∗ = argmin
θ

Ei,τ i,τ0

[∥∥sθ (τ i, i
)
−∇τ i log p

(
τ i|τ 0

)∥∥2] ,
(1)

in which i ∼ U{1, 2, . . . , N} is the diffusion timestep,
and τ i ∼ p

(
τ i|τ 0

)
is the trajectory τ 0 corrupted with

noise. Throughout the paper, we adopt Denoising Diffusion
Probabilistic Models (DDPM) [5] as the sampling method,
where p

(
τ i|τ 0

)
= N

(√
ᾱiτ

0, (1− ᾱi) I
)
, ᾱi :=

∏i
j=1 αi,

αi := 1 − βi and {βi} is a sequence of positive noise scales
0 < β1, β2, . . . , βN < 1.

B. Linear Temporal Logic (LTL)

Given a finite set of propositional symbols P , the for-
mula set Ψ of LTLf contains formulas recursively defined in
Backus-Naur form as follows [11], [12]:

φ := p | ¬φ | φ ∧ ψ | ⃝ φ | φUψ,

where p ∈ P and φ,ψ ∈ Ψ. Intuitively, the formula ⃝φ (next
φ) is satisfied if φ is satisfied at the next time step. φUψ (φ
until ψ) is satisfied if φ is satisfied until ψ is satisfied, and
ψ is satisfied by the end of the sequence. From these, other
commonly used logical connectives and temporal operators
can be defined according to the following equivalences: φ ∨
ψ = ¬ (¬φ ∧ ¬ψ), 3φ = trueUφ (eventually φ) and 2φ =
¬3 (¬φ) (always φ). The symbols true and false can also be
in the formula set defined by true = φ∨¬φ and false = ¬true.

In contrast to propositional logic, these formulas are
evaluated over finite sequences of observations σ =
⟨σ0, σ1, σ2, . . . σT ⟩ (i.e., truth assignments to the propositional
symbols in P), where σt ∈ {0, 1}|P| and σt,p = 1 iff
proposition p ∈ P is satisfied at time step t. true (false) is
always satisfied (not satisfied) by any assignment. Formally,
σ satisfies φ at time t ≥ 0, denoted by ⟨σ, t⟩ |= φ, as follows:

• ⟨σ, t⟩ |= p iff σt,p = 1, where p ∈ P
• ⟨σ, t⟩ |= ¬φ iff ⟨σ, t⟩ ̸|= φ
• ⟨σ, t⟩ |= (φ ∧ ψ) iff ⟨σ, t⟩ |= φ and ⟨σ, t⟩ |= ψ
• ⟨σ, t⟩ |=⃝φ iff ⟨σ, t+ 1⟩ |= φ
• ⟨σ, t⟩ |= φUψ iff ∃t2 ∈ [t, T ] s.t. ⟨σ, t2⟩ |= ψ and
∀t1 ∈ [t, t2), ⟨σ, t1⟩ |= φ

A sequence σ is then said to satisfy φ, i.e., σ |= φ, iff ⟨σ, 0⟩ |=
φ.
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III. METHOD

In this section, we describe our primary contribution, LTL-
DOG, a diffusion-based framework for generating trajectories
that satisfy LTLf formulae. We first discuss how to condition-
ally sample using diffusion models, followed by how LTLf

formulae can be used to guide the diffusion process.

A. Conditional Sampling in Diffusion Models

Given a trained score function from (1) such that
sθ ≈ ∇τ i log pi

(
τ i
)
, a diffusion model denoises

samples according to the distribution pθ
(
τ i−1|τ i

)
=

N
(

1√
αi

(
τ i + (1− αi) sθ

(
τ i, i

))
, (1− αi) I

)
starting

from a Gaussian prior τN ∼ N (0, I). For example,
DIFFUSER [1] samples a trajectory τ 0 from a diffusion
model, which an agent then executes. However, this original
sampling process is unable to control detailed properties of
generated context.

Here, we are interested in sampling trajectories that satisfy
both the final goal and the specified instructions encoded as
an LTLf formula φ that is provided during deployment. In
other words, we aim to sample trajectories under an objective
function Jφ

(
τ 0|g

)
. For example, J can have a high value

if the events induced by τ 0 satisfy φ and have a low value
otherwise.

Formally, given a set of atomic propositions P , the assign-
ments for τ are given by a labeling function L : S×A → 2|P|,
where each timestep of τ induces an assignment to the
propositional symbols in P . For example, in navigation task,
P can represent multiple regions to avoid and L is a function
indicating whether (st,at) in τ are inside these regions or not.
We will slightly abuse notation and write τ |= φ to indicate
that τ ’s assignments σ satisfy a LTLf formula.

We aim to sample from the posterior p0
(
τ 0|τ 0 |= φ, g

)
with the diffusion model as the prior. In this work, the con-
straint of goal state conditioning g can be either achieved by
inpainting (similarly on the start state s0) or implicitly encoded
in the dataset, which does not require separate modeling in
conditional sampling. Therefore, we mainly target the posterior
p0

(
τ 0|τ 0 |= φ

)
. Let y0 denote a binary random variable indi-

cating the likelihood of τ 0 satisfying φ. Hence, the denoising
process requires a score function conditioned on y0 = 1 and
by Bayes’ rule: ∇τ i log pi

(
τ i|y0 = 1

)
= ∇τ i log pi

(
τ i
)
+

∇τ i log pi
(
y0 = 1|τ i

)
. The first term on the right-hand side

has been learned by a neural network in diffusion. However,
the latter term requires an integration over all possible values
of τ 0: pi

(
y0|τ i

)
=

∫
p
(
y0|τ 0

)
pi

(
τ 0|τ i

)
dτ 0. We consider

the plug-and-play conditional generation setting and approx-
imating this integration with sample estimation [13], e.g.,
point estimation with pi

(
y0|τ i

)
≈ p

(
y0|τ̂ 0

)
where the

noiseless trajectory τ̂ 0 is estimated via Tweedie’s formula [14]
τ̂ 0 = 1√

ᾱi

(
τ i + (1− ᾱi)∇τ i log pi

(
τ i
))

. We model the
likelihood term as p (y|τ ) = Ze1[y=1[τ |=φ]], where Z is a
normalizing constant and 1 [·] is the indicator function. Putting

the above elements together, the conditional score function can
be computed as follows,

∇τ i log pi
(
y0|τ i

)
≈ ∇τ i log p

(
y0|τ̂ 0

)
= ∇τ i log

(
Ze1[y=1[τ̂

0|=φ]]
)

= ∇τ i1
[
y = 1

[
τ̂ 0 |= φ

]]
.

(2)

Unfortunately, both the indicator function and the satisfaction
evaluation (performed by techniques like model checking
with finite automata) are non-differentiable — this prohibits
application in the gradient-based sampling process of diffusion
models. We address this problem in the next subsection.

B. Differentiable Evaluation of LTLf

Our key approach is to “soften” the satisfaction evaluation.
To make the evaluation differentiable, we modify our formula
evaluator to output positive real values if a trajectory satisfies
the LTLf formula, and negative real values otherwise. Instead
of using a binary labeling functions, we assume real valued
assignments of atomic propositions can be obtained through
computation on the generated trajectories. As a specific ex-
ample, consider a navigation task where a robot has to avoid
obstacles; one can determine the assignment for proposition
p at timestep t using the Euclidean distance between st and
the centers of the region cp (assuming a circular shape).
A positive value of ℓ(p, t) = rp − ∥st − cp∥2, where
rp is the radius of the circle, indicates a true assignment.
Consequently, the labeling function for the entire trajectory
L : (S × A)T+1 → R|P|×(T+1) is differentiable and the
assignments are σ = L(τ ).

A binary version of σ through a sign function sgn(σ)
satisfies the definition of satisfy defined in Section II-B, but
the sign operation breaks differentiability. As such, we employ
a formula evaluator ft (φ,σt:T ) : Ψ × R|P|×(T−t+1) → R
to check satisfaction [15], with positive values implying
⟨σ, t⟩ |= φ, similar to signal temporal logic [16]. As such, f is
differentiable with the evaluation process defined as follows:

• ft(true,σ) = +∞
• ft(false,σ) = −∞
• ft(p,σ) = σt,p

• ft(¬φ,σ) = −ft(φ,σ)
• ft(φ ∧ ψ,σ) = minγ {ft(φ,σ), ft(ψ,σ)}
• ft(φ ∨ ψ,σ) = maxγ{ft(φ,σ), ft(ψ,σ)}
• ft(⃝φ,σ) = ft+1(φ,σ)
• ft(2φ,σ) = minγ{ft:T (φ,σ)}
• ft(3φ,σ) = maxγ{ft:T (φ,σ)}
• ft(φUψ,σ) = minγ{ft:k(φ,σ), ft (3ψ,σ)}, where
k ≥ t is the smallest integer s.t. fk(ψ,σ) > 0

Note that the min and max functions are likewise “soft” to
maintain differentiability. To reduce clutter, we have omitted
the subscript t when t = 0. With these operations, f maintains
quantitative semantics, which preserves the relative values
between different σ such that trajectories with larger margin
to a satisfying assignment have larger values.
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Given L and f , we can obtain a differentiable score function
by replacing the likelihood term in (2) with p (y|τ ) =
Ze(2y−1)f(φ,L(τ )). The conditional score is then

∇τ i log pi
(
y0 = 1|τ i

)
≈ ∇τ i log

(
Zef(φ,L(τ̂0))

)
= ∇τ if

(
φ,L

(
τ̂ 0

))
.

(3)

This approximation of the conditional score function can be
directly used with a pre-trained diffusion model to sample
trajectories conditioned on an LTLf formula. We call this
method LTLDOG-S, since it performs the above posterior
sampling in the reverse process (Algorithm 1). The gradient
ascent step is controlled by a stepsize {ζi}Ni=1; in practice,
the stepsize for each denoise step can be adaptive such
that τ i−1 remains valid according to the formula evaluator
f
(
φ,L

(
τ̂ 0

))
.

Algorithm 1 LTLf Planning with Posterior Sampling

Require: φ, N , sθ, {ζi}Ni=1

1: τN ∼ N (0, I)
2: for i = N − 1 to 0 do
3: ŝ← sθ

(
τ i, i

)
4: τ̂ 0 ← 1√

ᾱi

(
τ i + (1− ᾱi) ŝ

)
5: ϵ ∼ N (0, I)

6: τ i−1 ←
√
αi(1−ᾱi−1)

1−ᾱi
τ i+

√
ᾱi−1(1−αi)

1−ᾱi
τ̂ 0+

√
1− αiϵ

7: τ i−1 ← τ i−1 + ζi∇τ if
(
φ,L

(
τ̂ 0

))
8: end for
9: return τ̂ 0

C. Classifier Guidance over LTLf

One limitation of LTLDOG-S is that it necessitates a
known (and differentiable) expression for the formula eval-
uator f

(
φ,L

(
τ̂ 0

))
. This requirement can be challenging to

meet in scenarios where the truth assignments of propositions
are uncertain, for example, when the ground-truth physical
dynamics are unknown. Here, we circumvent this problem
by employing classifier guidance using a trained formula
evaluator.

We propose a variant of LTLDOG with regressor guidance,
which we abbreviate as LTLDOG-R. Using an ℓ2 loss, we
train a neural network to predict the satisfaction values from
noisy trajectories conditioned on LTLf instructions. In other
words, our neural network approximates the conditional score
function ∇τ i log pi

(
y0 = 1|τ i

)
. Note that in contrast to learn-

ing a binary classifier for trajectory satisfaction, we apply the
labeling function in Section III-B on the dataset and associate
with each trajectory its objective value Jφ

(
τ 0

)
. We conduct

ablation study in Section V-D to show that using real values
performs better than using binary labels.

To generalize over different LTLf , the neural network takes
both noisy trajectory and LTLf formula embedding as input.
Multiple methods exist for embedding LTLf formulae. For
instance, one can use Graph Neural Networks (GNNs) [17],
[18] to embed the tree representation of an LTLf formula
directly. Alternatively, the deterministic finite-state automaton
(DFA) [19], [20] associated with the formulae can be em-
bedded [21]. In this work we employ LTLf tasks from [22]

and embed the directed graph of an LTLf formula using
the Relational Graph Convolutional Network (R-GCN) [23],
which can generalize to LTLf formulae with same template
structure. The model that approximates the score function
sϕ(ϕ, τ

i, i) ≈ ∇τ i log pi
(
y0|τ i

)
after training can be plugged

into the conditional reverse process using regressor guidance
as summarized in Algorithm 2.

Algorithm 2 LTLf Planning with Regressor Guidance

Require: φ, N , sθ, sϕ, {ζi}Ni=1

1: τN ∼ N (0, I)
2: for i = N − 1 to 0 do
3: ϵ ∼ N (0, I)
4: τ i−1 ← 1√

αi

(
τ i + (1− αi)sθ

(
τ i, i

))
+
√
1− αiϵ

5: τ i−1 ← τ i−1 + ζisϕ(ϕ, τ
i, i)

6: end for
7: return τ̂ 0

IV. RELATED WORK

LTLDOG builds upon prior work in diffusion-based plan-
ning and symbolic reasoning using LTLf for robotics. In the
following, we give a brief overview of related work.

Learning and Planning under LTLf . As an expressive lan-
guage for specifying high-level planning requirements [24]–
[26], LTLf has been extensively used in various robotic tasks
to express temporally extended goals [27], [28]. These meth-
ods usually require the information about the environment’s
dynamics, e.g., a model or an abstraction, to effectively plan
under a given formula. Reinforcement learning agent learn in
a model-free way under LTLf objectives or constraints [29]–
[31] with the ability to generalize over different formulae [22].
However, these methods operate agent in an online manner
via trial and error, which can lead to expensive or even unsafe
interactions.

Planning and Policy Learning with Diffusion. Recent
diffusion-based planning methods are flexible that only rely on
offline datasets without access or interaction to environments.
They have been successfully applied to long-horizon planning
problems by generating states or actions for control [1]–[3],
but not tasks with test-time temporal requirements. Recent
work has looked into safety critical tasks e.g., the aforemen-
tioned CBF-based methods [7], [8]. As discussed above, these
methods were designed for static safety criteria, and the lack
the ability to satisfy temporally extended behaviors. Our work
inherits the advantages of diffusion based methods and can
fulfill LTLf requirements.

Inverse Problems in Diffusion. Our proposed method formu-
lates conditional measurement under LTLf with differentiable
loss function using the unnormalized likelihood [13], [32] for
posterior sampling and can guide the sampling process in a
plug-and-play fashion. The most popular methods to guide
diffusion models during inference is classifier guidance [33]
and classifier-free guidance [34]. However, these methods
cannot be applied in a plug-and-play fashion for new con-
ditioning factors. Our work is also related to inverse task that
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(a) Studio-like Lab. (b) Office room. (c) Unitree Go2.

Fig. 2. Real world environments for quadruped robot navigation.

TABLE I
PERFORMANCE ON AVOIDANCE TASKS IN MAZE2D

Method\Perf. Satisfaction rate1(%) ↑ Reward
(UnCon)2↑

Planning Rollout

DIFFUSER 9.5±3.1 11.0±1.7 142.2±5.1
SAFEDIFFUSER 99.4±0.9 12.3±3.5 135.8±5.2
LTLDOG-S 99.0±0.8 73.0±3.0 97.3±2.8
LTLDOG-R 98.8±0.8 92.0±1.4 127.1±5.1

1 Mean and standard deviation calculated from 10 groups of tests. Each
test contains 100 trials, where a trajectory is labeled as either satisfied
or not satisfied in each trial. Best result during rollout is highlighted.
Same for other tables of Maze2d.

2 Unconstrained rewards do not take unsafe penalties into account.

TABLE II
RESULTS OF AVOIDANCE TASK IN PUSHT

Method\Perf. Satisfaction rate(%) ↑ Overlap Score1↑

DIFFUSION POLICY 34.8±18.0 0.941±0.0584
LTLDOG-S 85.6±13.1 0.890±0.0647
LTLDOG-R 85.6±12.5 0.842±0.0985

1 measures the final overlap of the T block and target area (min:
0.0, max: 1.0).

infers a posterior distribution over data given a measurement.
Inverse methods [35]–[38] do not require training a conditional
model in diffusion and can directly leverage pre-trained neural
networks.

V. EXPERIMENTS

Our experiments focus on testing LTLDOG’s ability to
handle static and temporal safety constraints. We first briefly
describe the simulated and real environments, and baseline
data-driven methods. Then we report empirical results on
benchmark environments and demonstrate LTLDOG’s ap-
plicability in real world tasks through a case study on a
quadruped robot (Fig. 2). We conclude with a brief ablation
study and analysis. Due to space restrictions, we focus on
conveying our main results. More details of the environments,
implementations and analysis can be found in the online
supplementary material1.

A. Experimental Setup

Environments. We evaluate methods in two simulation bench-
mark environments (Maze2d [1] and PushT [3]) and demon-
strate in two real indoor rooms. Maze2d (Fig. 3 and 5)
presents challenging long-horizon navigation tasks, where
state-of-the-art offline algorithms fail to learn a reliable goal-
reaching policy. The atomic propositions are determined by

1https://github.com/clear-nus/ltldog

(a) DIFFUSER. (b) SAFEDIFFUSER. (c) LTLDOG-S.

Fig. 3. Examples of safe planning in Maze2d-Large. There are three unsafe
blocks (red squares, labeled pL, pM , pR from left to right) that need to be
avoided during navigation to the goal (shaded circle). The LTLf constraint for
this task is φ = 2¬(pL∧pM ∧pR). (a) Trajectories from DIFFUSER ignore
safety and can violate the specified constraints. (b) SAFEDIFFUSER produces
discontinuous trajectories. (c) Our LTLDOG is able to plan trajectories that
detours around the obstacles to successfully arrive at the goal.

(a) PushT environment. (b) DIFFUSION POLICY. (c) LTLDOG-S.

Fig. 4. Results of safe control in PushT. (a) A robot arm’s end effector (circles
filled in blue) should manipulate the T block (gray) to a goal pose (green),
and avoid entering unsafe regions (hollow circles marked with pX), specified
by an LTLf formula (text in black). In this example, the LTLf specifies the
end effector should never enter regions p1 (purple) and p3 (cyan). (b) The
actions generated and executed by DIFFUSION POLICY do not satisfy the
LTLf formula. (c) In contrast, LTLDOG-S guides the diffusion to avoid p1
and p3, yet still completes the manipulation task.

the occurrence of events when the agent is inside key regions
in the maze (for avoidance and visitation). The PushT task
(Fig. 4) requires manipulation of a T block through interaction
with a controllable mover. In our experiments, the mover is
constrained to visit specific regions and avoid others. Our
real-world experiments involve two indoor environments: a
lab designed to mimic a studio apartment, and an office
environment (Fig. 2).
Compared methods. Our work involves trajectory generation
by learning from an offline dataset and as such, we compare
against data-driven planning methods. DIFFUSER and DIFFU-
SION POLICY are state-of-the-art methods for sampling viable
plans but without any guarantees over external constraints. To
evaluate how well LTLDOG enforces safety specifications,
we compare with SAFEDIFFUSER, a safe planning diffusion
model using CBFs. However, note that SAFEDIFFUSER cannot
handle temporal constraints or instructions; to our knowledge,
our work is the first data-driven method to handle both
static and temporal constraints. As such, there is no direct
comparison baseline. We analyze the differences between the
two variants of our method, LTLDOG-S and LTLDOG-R.

B. Comparative Analysis of Methods

Can LTLDOG achieve safe planning for static constraints?
Our results indicate that yes, LTLDOG is better able to gener-
ate trajectories that satisfy given region-avoidance constraints
relative to existing methods. In both the Maze2D and PushT
benchmarks, LTLDOG achieves high success rates (in both

https://github.com/clear-nus/ltldog
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(a) Regions for evaluation of atomic propositions in P .

(b) DIFFUSER.

(c) Ours (LTLDOG-S).

Fig. 5. Temporal Constraints in Maze2D. (a) Each maze has 6 non-
overlapping regions. Agents are requested to visit some of these blocks under
different temporally-extended orders. (b) and (c) show generated trajectories
under φ = ¬p3 U (p5 ∧ (¬p2 U p0)). Our method can satisfy ¬ propositions
(red zones) before reaching the green regions.

planning and rollout), without severely compromising reward
accumulation (Tables I and II). Lower total rewards are
expected since safe paths are typically longer and rollout
scores are generally lower as the low-level controller may
not exactly follow the diffused trajectory. Qualitatively, Fig. 3
shows that LTLDOG is able to generate safe trajectories in
Maze2D, whilst SAFEDIFFUSER is limited to “local” devia-
tions and fails to find paths that detour around unsafe regions.
Results in PushT are consistent with Maze2D; Fig. 4 shows
that LTLDOG performs the orientation task without entering
unsafe regions.

Can LTLDOG satisfy static and temporal constraints,
and generalize to novel LTLf formulae? Tables III and
IV show the performance of the compared methods on both
training and test LTLs in Maze2d and PushT environments.
To elaborate, we follow the LTLf specifications in [22] and
adopt the Until sampler to generate random LTLf s (200
for Maze2d and 36 for PushT) that contain different visitation
sequences and unsafe regions. The training set has 80% of all
LTLf s and the rests are used as test set. Atomic propositions
consist of 6 regions in Maze2d (Fig. 5(a), i.e., p0, p1, . . . , p5)
and 4 regions in PushT (Fig. 4(a)).

Results reveal that both LTLDOG-S and LTLDOG-
R achieve significantly higher success rates than DIF-
FUSER/DIFFUSION POLICY. The baselines have a non-zero
performance as some generated LTLf formulae are trivial to
satisfy at some start locations. Also note that some specifica-
tions may be impossible to satisfy given the physical locations
of the agent, walls, and propositional regions in the maze. In

(a) Lab map and dataset
coverage.

(b) DIFFUSER. (c) Ours.

(d) Office map and
dataset coverage.

(e) DIFFUSER. (f) Ours.

Fig. 6. Results in real world rooms. The instructed LTLf is φ =
¬PassagewayUKitchen for lab (first row) and φ = 3 (Door ∧3Seat) for
office (second row). In the lab task the robot has to first unload in the kitchen
area after entering the door before being allowed to go to the goal. When
loaded, the robot is prohibited from going through the narrow passageway
where people sit on the side. In the office task, the robot has to first visit the
seat, followed by the door, before the goal.

these cases, planned trajectories will violate constraints during
rollout, causing a drop in the satisfaction rate. Fig. 5 shows
examples of trajectories generated in Maze2d.

C. Real Robot Case Study.

We show that LTLDOG can plan for a robot dog (Unitree
Go2 Edu) given LTLf instructions in two real-world naviga-
tion environments — a lab that mimics a studio apartment and
an office room. Training of diffusion models was performed
in simulation using Gazebo and ROS1 using LIDAR scanned
maps (Fig. 6(a) and 6(d)). Note that the training trajectories
do not require running an oracle policy to satisfy many
different LTLf formulae; we simply made the robot navigate
to randomly sampled goals using the global planner and TEB
Local Planner [39] from the ROS1 Navigation stack (Fig. 6(a)
and 6(d)).

To test on potential constraints, we queried GPT-4 for LTLf

formulae representing meaningful robotic tasks including ob-
stacle avoidance and sequential navigation. We used 4 kinds
of LTLf s from the generated results, i.e., 2¬p0, 3p0 ∧3p1,
3 (p0 ∧3p1) and ¬p1 U p0. The first LTLf corresponds to an
obstacle avoidance task where the robot should never visit a
specific region. For example, 2¬Seat means the robot should
never enter the Seat region (Fig 6(d)). The remaining three
LTLf formulae represent: 1) visiting all regions at least once;
2) visiting regions in a specific sequence; 3) avoiding a specific
region until another has been visited. Some example regions
designed in our real environments and start/goal locations are
shown in Fig 6.

In total, 96 trials were executed on the real robot, involving
12 trajectories (6 for baseline DIFFUSER and 6 for our
method LTLDOG-S) with varying regions and different LTLf



FENG et al.: LTLDOG: SATISFYING TEMPORALLY-EXTENDED SYMBOLIC CONSTRAINTS FOR SAFE DIFFUSION-BASED PLANNING 7

TABLE III
PERFORMANCE ON DIFFERENT LTLf S IN MAZE2D.

Environment Method\Performance
Training LTLf s Testing LTLf s

Satisfaction rate (%) ↑ Reward (UnCon) ↑ Satisfaction rate (%) ↑ Reward (UnCon) ↑
Planning Rollout Planning Rollout

U-Maze (Horizon 256)
DIFFUSER 31.1±0.5 31.0±0.5 33.5±2.7 33.9±0.5 34.1±0.6 35.6±0.3
LTLDOG-S 83.8±0.2 57.6±1.3 31.3±1.2 82.7±0.3 56.6±0.9 32.8±0.5
LTLDOG-R 56.3±0.4 51.3±0.9 31.5±0.2 57.7±0.4 52.1±0.3 32.3±0.7

Medium (Horizon 384)
DIFFUSER 15.0±0.7 13.4±0.6 84.8±0.3 11.6±1.4 10.1±1.2 84.8±0.5
LTLDOG-S 77.9±5.7 31.8±2.6 53.1±5.2 68.4±6.7 28.7±3.5 50.5±4.7
LTLDOG-R 51.8±1.8 39.5±1.6 57.3±0.2 43.3±4.4 30.6±1.9 57.7±0.1

Large (Horizon 512)
DIFFUSER 13.5±0.4 12.8±0.1 76.3±0.1 11.6±2.3 11.5±1.7 77.8±3.9
LTLDOG-S 73.8±2.4 32.6±1.4 42.3±5.0 66.6±2.7 24.9±1.7 40.9±4.4
LTLDOG-R 66.9±0.6 47.4±0.8 54.6±1.3 57.5±2.3 39.0±2.9 54.5±3.9

TABLE IV
GENERALIZATION TO DIFFERENT LTLf FORMULAE IN PUSHT

Method\Performance LTLf Set Satisf. rate (%) ↑ Score ↑

DIFFUSION POLICY
Training 22.9±8.0 0.354±0.153
Test 30.7±13.9 0.371±0.177

LTLDOG-S Training 28.2±8.33 0.290±0.115
Test 43.0±17.0 0.299±0.145

LTLDOG-R Training 69.3±9.90 0.292±0.121
Test 66.0±20.8 0.340±0.168

TABLE V
RESULTS OF ACHIEVING GOALS AND LTLf IN REAL-WORLD TASKS.

Environment Method\Performance Satisfaction rate (%) ↑

Goal LTLf

Lab DIFFUSER 100.00 0.00
LTLDOG-S 91.67 91.67

Office DIFFUSER 100.00 0.00
LTLDOG-S 95.83 95.83

formulae in each room. The overall satisfaction rate of all
raw generated trajectories in simulation is 85.8± 14.0% (c.f.
baseline 2.9±5.4%). For each specific formula, a sample was
selected for real-world execution based on their feasibility.
The results in TABLE V show that LTLDOG has a high
satisfaction rate compared to DIFFUSER; Fig. 6(c) and 6(f)
illustrate trajectories for qualitative comparison.

D. Ablation Study and Analysis

Ablation study. Unlike classifier guidance, where each tra-
jectory is labelled as satisfy or not satisfy, we leverage the
continuous values from our formula evaluator (as described

TABLE VI
ABLATION STUDY – BINARY CLASSIFIER GUIDANCE

Method\Performance LTL Set Satisfaction rate (%) ↑ Reward
(UnCon) ↑

Planning Rollout

DIFFUSER
Training 31.1±0.5 31.0±0.5 32.5±2.7
Test 33.9±0.5 34.1±0.6 35.6±0.3

Classifier guidance1 Training 41.1±0.6 40.6±0.7 33.9±0.9
Test 40.0±0.8 41.8±1.1 35.3±0.3

LTLDOG-R Training 56.3±0.4 51.3±0.9 31.5±0.2
Test 57.7±0.4 52.1±0.3 32.3±0.7

1 The classifier guidance method only leverages binary labels for LTL
satisfaction checking in Maze2d U-Maze.

(a) Planning. (b) Rollout.

Fig. 7. Performance in Maze2d U-Maze with different lengths of trajectory.
DM stands for DIFFUSER and DoG-S/DoG-R are our methods.

in Section III-C) and train a regressor guidance network.
Although classifier guidance improves over the vanilla DIF-
FUSER, it achieves lower performance than LTLDOG-R (
Table VI). This comparison supports the notion that soft labels
improves the guidance neural network; we posit using real
values provides richer information in terms of how well the
trajectory satisfies a given LTLf formula.
Analysis on horizon. Fig. 7 demonstrates that planning with
a longer horizon leads to improved performance in terms of
LTLf satisfaction. This improvement is attributed to the fact
that LTLf instructions often require a longer sequence of steps
in a path compared to mere goal navigation, e.g., visiting a
specific region before reaching the goal.

VI. CONCLUSION, DISCUSSION AND FUTURE WORK

In this work, we presented LTLDOG, an approach towards
generating safe trajectories that comply with LTLf specifica-
tions at test time. Within our overall scheme, we presented two
methods: LTLDOG-S guides the sampling process under any
LTLf formula while LTLDOG-R uses a trained model that
we show generalizes to new formulae with similar structure.
To our knowledge, this work is the first that successfully
incorporates model checking using a formal language with
diffusion models for safe planning. Notably, LTLDOG does
not require data collection for each potential LTLf instruction;
rather, we control the sampling process during diffusion using
“soft” model checking to generate new trajectories using
existing information provided by the training dataset.
Limitations and Future Work. LTLDOG is a step towards
trustworthy trajectory planning using generative models. There
are several areas where LTLDOG can be improved. Similar to
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other diffusion models, LTLDOG is generally unable to gen-
erate realistic trajectories when the context (environment/goal)
is far from the training distribution. As such, the dataset
should preferably contain trajectories with a variety of com-
plex behaviors that can potentially satisfy different test-time
LTLf formulae. It would be interesting to develop methods
to ensure the sampling process of LTLDOG-S adheres to the
data manifold. Additionally, LTLDOG plans in an open-loop
fashion, where the entire trajectory is generated conditioned
on the constraints. This is mainly because the evaluation of
an LTLf formula depends on the entire trajectory. We plan
to further explore planning using receding horizon control
using partial evaluations on an incomplete trajectory. Finally,
diffusion models usually require large amounts of training data
and many diffusion steps during inference. Recent work on
interpolant diffusion methods [40] leverages source policies
to reduce data and computation costs. We aim to explore
how integrating this approach with conditional sampling using
LTLf can enhance the generation of safe trajectories.
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