
Robotica (2023), 41, pp. 3333–3348
doi:10.1017/S0263574723001005

RESEARCH ARTICLE

A divide-and-conquer control strategy with decentralized
control barrier function for luggage trolley transportation
by collaborative robots
Xuheng Gao1 , Hao Luan1 , Bingyi Xia1, Ziqi Zhao1 , Jiankun Wang1,2 and Max Q.-H. Meng1

1Shenzhen Key Laboratory of Robotics Perception and Intelligence, Department of Electronic and Electrical Engineering,
Southern University of Science and Technology, Shenzhen, China and 2Jiaxing Research Institute, Southern University of
Science and Technology, Jiaxing, China
Corresponding authors: Jiankun Wang, Max Q.-H. Meng; Emails: wangjk@sustech.edu.cn, max.meng@ieee.org

Received: 7 March 2023; Revised: 28 May 2023; Accepted: 24 June 2023; First published online: 17 August 2023

Keywords: mobile robots; multi-robot systems; automation; decentralized control; collaborative robots

Abstract
This article focuses on the luggage trolley transportation problem, an essential part of robotic autonomous luggage
trolley collection. To efficiently address the nonholonomic constraints derived from the formation of two collabora-
tive robots and a queue of luggage trolleys, we propose a comprehensive framework consisting of a global planning
method and a real-time divide-and-conquer control strategy. The popular Hybrid A∗ algorithm generates a feasible
path as the global planner. A model predictive controller is designed to track this path stably and in real time. To
maintain the formation so that the whole queue of robots and luggage trolleys does not split, a safety filter that
consists of a discrete-time control Lyapunov function and a decentralized control barrier function is implemented
in the transportation process. Finally, we conduct real-world experiments to verify the effectiveness of the proposed
method on three representative paths, and the results show that our approach can achieve robust performance. The
demonstration video can be found at https://www.youtube.com/watch?v=iPiT8BfLIpU.

1. Introduction
Today, intelligent robots are widely used in shopping malls, restaurants, hospitals, and other places to
assist people in completing tedious tasks. They can also be used to achieve robotic autonomous luggage
trolley collection at airports, which is a major task at all airports [1]. Currently, most airports still man-
ually collect and transfer luggage trolleys to designated areas, which is labor-intensive and relatively
inefficient [2]. Using robots to collect and transfer dispersed luggage trolleys can improve work capacity
[3]. The collection task can be divided into three sub-tasks: (1) Identifying and collecting dispersed and
unoccupied luggage trolleys one by one [4]; (2) Gathering the collected trolleys into a queue; and (3)
Two collaborative robots transport the luggage trolley queue to a designated area for continued use by
other passengers. The first two sub-tasks have been addressed by many researchers [1,4]. Herein, this
article focuses on the last challenging sub-task and proposes a divide-and-conquer control strategy that
solves the multiple and complicated constraints separately. In this article, the control system we need
to deal with consists of a luggage trolley queue and two collaborative robots, one as the leader and the
other as the follower. Figure 1 illustrated a photo of the whole system.

The luggage trolley queue can be regarded as a series of rigid bodies. Transporting a series of rigid
bodies is commonly used in object manipulation, especially for a large quantity. However, it is not easy to
handle the transportation of luggage trolley queues. The system is subject to nonholonomic constraints
because collaborative robots have differential structures. In addition, the relative position of the leading
and following robots must be considered to maintain a stable formation. Due to the complexity of the
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Figure 1. The luggage trolley transportation system.

task, it is usually to calculate the feasible control input by means of optimization, which is widely used
in a variety of complicated robot tasks [5–7].

Inspired by the idea of divide-and-conquer, we propose a hierarchical policy to achieve this trans-
portation task in this article. First, a high-level global planner provides a smooth path from initial to
goal positions. Second, a low-level controller is designed to track the global path while maintaining the
system’s formation. Specifically, we use Hybrid A∗ [8] to generate a global path that is smooth enough
and practical for the system to track. After that, we propose a divide-and-conquer control strategy that
contains three modules. We use a model predictive controller module (MPC) to generate a set of initial
control inputs. MPC can plan the trajectory by minimizing the loss [9]. Subsequently, a safety filter,
which consists of a discrete-time control Lyapunov function module (DT-CLF) and a control barrier
function module (CBF) in a decentralized form, is employed to optimize the generated control inputs.
The safety filter ensures that the control inputs satisfy all formation constraints in the collaborative trans-
portation task. Finally, the filtered control inputs are sent to the actuators to drive the two collaborative
robots to move the luggage trolley queue along the global path.

1.1. Related work
Manipulating objects with mobile robots has received a lot of attention recently. A substantial potential
application is for object transportation [10]. However, existing challenges include but are not limited to
mechanical design, planning algorithms, control strategies, etc. In this article, we pay attention to plan-
ning and control parts. Currently, the research works can be divided into two categories depending
on the end effector. (1) Integrating robot manipulators on the mobile platform. (2) Designing cus-
tomized manipulation mechanisms for specific tasks. The former is universal for sophisticated tasks
represented by PR2 [11] and Fetch [12]. Refs. [13] and [14] also focuses on the control of collaborative
mobile manipulators. However, the kinematic redundancy will complicate planning and control difficul-
ties [15]. Another disadvantage is the high cost, which limits its widespread use. In contrast, the latter
exhibits greater flexibility in specific tasks, which has also received extensive attention from academia
and industrial community.

Most of the current research focuses on manipulating a single object by mobile robots. Both refs. [4]
and [16] employ one mobile robot to collect a single luggage trolley. When dealing with more complex
tasks, the functions and capabilities of a single robot are limited. Multi-robots gradually replace the
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single robot to achieve more complex work [17]. In our luggage trolley transport task, the connection
between any adjacent two trolleys is not perfectly rigid, so the connection is unstable. Relying on push
and pull in a single direction will not make the queue move as expected. In addition, a single robot
cannot control the direction of the queue of luggage trolleys during transport. In order to solve the above
problems, we adopt the mode of two robots, one in front and one in back, lining up with luggage trolleys
and cooperating to complete the transportation.

Although [18] realizes transporting multiple objects by six robots, the transported objects are not
connected to any robots. Six robots form a cage that surrounds the objects and push them forward.
This method does not control the payload well, especially for large objects. Ref. [19] presents a four-
robot fleet to transport a 20 kg plate. However, the payload is not caught by any robots. The connection
between robots and the payload is unstable, especially during acceleration and deceleration. To solve
the instability, we design a specific grasping device to fix the trolley. Ref. [15] realizes multi-robot
collaborative handling of a deformable thin sheet. Since the object is deformable, the distance between
robots and the angle of each robot does not need to be strictly constrained. Contrary to the flexibility
of non-stationary applications and deformable objects, transporting a luggage trolley queue is much
more difficult because there is little room for redundancy in the changing distance between two robots.
The collaborative robots must clamp the luggage trolley queue to prevent disassembly. Additionally,
due to the mechanical connection restrictions of the grasping device and the formation requirements of
the system, there should be a maximum limit on the robot’s steering angle during the turning process.
Therefore, we also need to control the angular constraints of the robot.

A well-known formation is the leader-follower formation. A popular communication type is implicit.
The robots acquire information by interactions with the environment and other robots [20]. The authors
construct two mobile robots to transport the rod, which is also a rigid body. The authors implement
the decentralized framework to improve the robustness. Ref. [21] also makes followers apply force in
the leader’s direction as a policy. Ref. [22] introduces a consensus-based approach by using only local
measurements from each robot. The authors demonstrate that leader-follower formation converges as
long as the leader exists. In leader-follower formation, the leader has absolute leadership in the system.
Only the leader knows the goal configuration of the task. The follower ensures contact with the object
and the system formation only through force/torque measurements. Since the leader has no feedback
from the follower, it cannot adjust accordingly when the follower is disturbed [23].

1.2. Our contributions
The contributions of this work are threefold.

1. We propose a divide-and-conquer control strategy to deal with the multiple constraints in luggage
trolley transportation.

2. In the control strategy, a decentralized CBF for managing angle constraints is applied.
3. We verify the effectiveness of our system on both the simulation platform and the physical

hardware platform.

2. System description
2.1. Notation and problem definition
In this article, we use bold font lowercase letters for vectors, bold font capital letters for matrixes, regular
font lowercase letters for scalars, and calligraphy font capital letters for spaces. We call each robot’s 2-D
coordinates and 1-D yaw angle as state, and the whole system’s 2-D coordinates and 1-D yaw angle as
pose. The collaborative transportation task has a 6-D state for two robots and a 3-D pose for the system
as Fig. 2 shows. Let X ⊂R

6 be the state space of the two robots and P ⊂R
3 be the pose space of the

whole system. We use x ∈X and p ∈P to represent the state of two robots and the pose of the system,
respectively. They can be expressed as
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Figure 2. The kinematic model is with nonholonomic constraints. The system contains two differential
robots numbered as 0 (leading) and 1 (following), respectively. Inter-robot distance (L), system’s yaw
angle ψ , and robot steering angles relative to the system (ϕ0 and ϕ1) are also illustrated.

x = [
x0, y0, θ0, x1, y1, θ1

]T
, (1a)

p = [
α, β, ψ

]T
, (1b)

where

α = x0 + x1

2
, β = y0 + y1

2
, (2a)

ψ = arctan 2 (y0 − y1, x0 − x1) . (2b)

To describe x, we denote k as time step and i, j as robot’s IDs specially, namely, xi =
[

xi, yi, θi

]T.
Let Xobs ⊂X represent the obstacle space and Xfree =X \Xobs be the free space. So does Pobs ⊂P and
Pfree ⊂P . Pgoal ⊂Pfree is the goal space that can be expressed as a circle

{
x ∈Xfree | ∥∥p − pgoal

∥∥ ≤ r
}

with
a radius of r. L is to represent the distance between two robots, where L = [ (x0 − x1)

2 + (y0 − y1)
2 ]1/2.

The control input space is U ⊂R
4, which consists of linear velocity v and angular velocity ω for both

robots. We use u ∈ U to be the control input of two robots as Eq. (3) shown,

u = [
v0, w0, v1, w1

]T
. (3)

The kinematics is with the form of Eq. (4), where k is the discrete time step. The time interval of any
adjacent two time steps is assumed as a constant, �t,

xk+1 = xk + Buk�t. (4)

Our problem is defined as follows: First, a real-time path planner should solve a feasible global path
g:R→Pfree from the initial pose g0 = pinit to the goal gS ∈Pgoal with step s ∈ {0, 1, 2, . . . , S}. Let G be
the set that contains all the feasible paths. A cost function J(g):G →R, which maps the feasible path g
to a real number, is used to measure the path quality. The optimal path is formulated by

g∗ = arg min
g∈G

J(g). (5)

Then, a real-time controller will generate a set of control inputs uk ∈ U for two robots to track the optimal
path while holding the distance of two robots to a reference distance (L → Lref) and limiting the steering
angles of the two robots relative to the queue (|ϕi| ≤ ϕi,max). Lref is decided by the number of trolleys
in the queue, which can be measured when the queue forms, and ϕi,max is the maximum steering angle
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Grasping device

Figure 3. The physical hardware consists of chassis, grasping device, computing platform, and sensor
modules.

of each robot relative to the system, which can be acquired by experiments. For any feasible path g =[
g0, g1, g2, . . . , gS

]
, the controller must generate the control inputs to make the system traverse all the

intermediate pose gs from g0 to gS in turn, where s ∈ {1, 2, 3, . . . , S − 1}.

2.2. Preliminary work
We have independently developed two autonomous robots for luggage trolley queue transportation as
shown in Fig. 3, which integrate moving chassis, grasping device, computing platform, control, and
sensing modules. The two robots have similar structures and electron devices except for the position
of grasping device, which is exclusively designed to secure the front and back of luggage trolleys,
respectively. Similar robots can ensure the transportation of payloads.

2.3. Localization
In this article, our robot formation is an approximate rigid body structure. A slight error in distance
control (e.g., > 5 cm) will cause the formation to fall apart. However, traditional localization methods,
including but not limited to Lidar-based, such as AMCL [24], and vision-based, such as ORB-SLAM2
[25] and its variants, cannot directly achieve the required accuracy. In addition, the localization uncer-
tainty of a single robot will cause a more significant error in the distance measurement of robot
formation. Therefore, in order to reduce the impact of localization problems in our system, we tem-
porarily use Motion Capture System to provide an accurate positioning to verify the effectiveness of the
control strategy.

3. Planning and control strategy
In this section, we will describe the system framework, as shown in Fig. 4, which consists of the global
planning algorithm and the divide-and-conquer control strategy with a novel decentralized CBF. We call
our robots the leader and follower for convenient description.

3.1. Global planning
Considering that this task deals with a two-robot system with nonholonomic constraints that needs to
maintain system formation, traditional path planning algorithms such as basic A∗ [26] cannot handle the
problems with nonholonomic constraints. We have also verified through simulation experiments that
these methods are unsuitable for our objective. Therefore, we choose Hybrid A∗ [8] algorithm, which
considers the actual motion constraints of nonholonomic systems, as our global planning algorithm.
Compared with basic A∗, Hybrid A∗ has the following characteristics.
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Figure 4. The framework of our system. The two collaborative robots run the programs with the same
modules simultaneously. The location information is all from the Motion Capture System. The photo of
two collaborative robots and the luggage trolley queue is from the top view.

1. Hybrid A∗ is a heuristic search algorithm in the continuous coordinate system, and can ensure
that the generated trajectory satisfies the vehicle nonholonomic constraint.

2. Hybrid A∗ takes the kinematic characteristics of the vehicle into account by constrained
heuristics.

3. In order to improve the search speed and precision, Hybrid A∗ uses Reeds-Shepp model [27] to
augment the search quality.

4. Hybrid A∗ uses the Voronoi field as the potential field to handle the navigability of narrow
openings.

5. An optimization is used to smooth the final path.

Although the kinematics of our system is a little different from a vehicle, the path generated by Hybrid
A∗ is still practical for our system by experimental verification. The path quality and comparison with
basic A∗ will be illustrated in Section 4.1.1.

3.2. Control strategy
After obtaining the optimal path from the global planner, the next step is to achieve how to effectively
track the path by two robots with the luggage trolley queue. On this basis, we also need to ensure the
maintenance of system formation. We adopt a divide-and-conquer control strategy with the combination
of three parts:

1. MPC: track the path generated by the global planner.
2. DT-CLF: maintain the distance between two robots, namely, to maintain the formation.
3. CBF: limit the steering angles of two robots, also to hold the system formation.
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In this article, we call the latter two modules together as the safety filter. The functions of the three
modules are basically decoupled from each other. Compared with integrating them in a single con-
troller, this divide-and-conquer way has two advantages: higher solution efficiency and larger solution
probability. We have tried to fuse them in one optimization problem and found the result unsatisfactory.
Sometimes, it needed to add slacks to reduce constraints for solving a feasible solution. Finally, we adopt
the mode of splitting into three modules. All nonlinear programs are formulated in CasADi [28] and
solved by IPOPT [29].

3.2.1. MPC
Considering the two robots as a whole, we adopt the discrete model. The kinematic model is shown in
Fig. 2 and Eq. (6),

xk+1 = xk + Buk�t, (6a)

xk = [
x0,k, y0,k, θ0,k, x1,k, y1,k, θ1,k

]T
, (6b)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos
(
θ0,k

)
0 0 0

sin
(
θ0,k

)
0 0 0

0 1 0 0

0 0 cos
(
θ1,k

)
0

0 0 sin
(
θ1,k

)
0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6c)

uk = [
v0,k, w0,k, v1,k, w1,k

]T
. (6d)

In this phase, we pay more attention to make the system’s center track the global plan during move-
ment. The constraints on formation control are not strict. Only the last predictive state MPC is required
to maintain the distance as Lref. For other states, there is no distance constraint. This not only gives the
system a tendency to maintain distance requirements but also avoids problems such as the increase in
computing time and infeasible solutions caused by strong constraints. This tendency also ensures that
the solution of MPC will not make the two-robot system deviate too far away from the formation, which
alleviates the pressure of solving the following modules to a certain extent.

The tracking can be interpreted as an optimization problem. The objective is to minimize the weighted
sum of the square of tracking error, ‖pN − gm‖2

QMPC
, and the square of control inputs

∑N−1
k=0 ‖uk‖2

RMPC
,

where N is the predictive horizon of MPC, pN is the last pose of MPC prediction, gm is the tracked
pose on the global path, QMPC and RMPC are the positive definite weight matrixes. For selecting gm,
first the pose go, which is the nearest to the system’s current pose, is chosen. Then, gm = go+s can be
calculated by a certain step s. The Euclidean distance between gm and pN is calculated. Minimizing
control inputs to the objective is to control the system by a set of control inputs that are as small as
possible. The relevant hard constraints are added to limit the maximum value of linear velocity v and
angular velocity ω. Additionally, as mentioned before, we want MPC to express a tendency that holds
the system’s formation while avoiding too much pressure on the solver in this phase, so we just make a
hard constraint that the last state prediction must maintain the reference distance strictly, which means
LN = Lref, where LN and Lref are the inter-robot distance of the N-th state and reference inter-robot distance
respectively. The final formulation of MPC is

min
u

‖pN − gm‖2
QMPC

+
N−1∑
k=0

‖uk‖2
RMPC

, (7a)

s.t. − uk,max ≤ uk ≤ uk,max, (7b)

uk ∈ U , (7c)
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LN = Lref, (7d)

k ∈ {0, 1, 2, . . . , N − 1} , (7e)

where uk ∈ U = [
u0, u1, u2, . . . , uN−1

]
. Angle constraints are not taken into account in this module. The

predicted control input is U ⊂R
4×N . We call u0 as uMPC and send it to the next module.

3.2.2. DT-CLF
The previous step calculates the control input mainly for tracking the global path, while the constraints
that guarantee the system’s formation are ignored. Although we add a distance constraint on the last
predictive state, it only maintains a converging tendency, which is insufficient in practical application.
Stronger guarantees on the stabilization of the inter-robot distance are wanted. We leverage DT-CLF to
meet the distance requirement.

Definition 1(DT-CLF, based on ref. [30]). A map V:X →R is an exponential control Lyapunov function
for the discrete-time control system of Eq. (4) if there exist positive constants κ1, κ2, κ3 and a control
input uk:X →U, ∀xk ∈X such that

κ1 ‖xk‖2 ≤ V (xk)≤ κ2 ‖xk‖2 , (8)

and

�V (xk, uk)+ κ3V (xk)≤ 0, (9)

where �V (xk, uk)� V (xk+1)− V (xk) with xk+1 following Eq. (4).

We focus on the error between the inter-robot distance and its desired value:

ek � xTDTDx − L2
ref

= (x0,k − x1,k)
2 + (y0,k − y1,k)

2 − L2
ref, (10)

with

D =
[

1 0 0 −1 0 0

0 1 0 0 −1 0

]
. (11)

Then, we design the candidate DT-CLF for distance stabilization as

V(ek) � (ek)
2 . (12)

Obviously, Eq. (12) satisfies Eq. (8) by 0< κ1 < 1 and κ2 > 1. To render Eq. (12) as a valid DT-CLF, we
pose the following CLF constraint for our dual-robot system Eq. (6) to ensure the origin is exponentially
stable:

�V (ek, uk)+ cV (ek)≤ 0, (13)

where xk+1 (associated with ek+1) follows the robots’ kinematics Eq. (6).
We expect to modify uMPC as slightly as possible while holding the DT-CLF constraints to enable

both path tracking and distance maintenance. Therefore, the optimization in this phase is formulated as

min
u

‖u − uMPC‖2
RCLF

, (14a)

s.t. �V(e, u) + cV(e) ≤ 0, (14b)

−umax ≤ u ≤ umax, (14c)

u ∈ U . (14d)

We call the optimization result as uCLF and sent it to the next module.
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3.2.3. CBF
Considering the above-mentioned mechanical designs of the robot, there exists a physical limit for the
angle between the grasping device and the robot chassis. Respecting this angle constraint is essential
for the system’s safe and successful operation. For practical consideration while without loss of theoret-
ical guarantees, we use CBF and formulate a quadratic programming (CBF-QP) [31,32] to ensure the
system’s safety. In this subsection, we shall first construct the CBFs for our system and then pose the
optimization problem. In addition, we present a distributed derivation toward the optimization problem
for the sake of scalability.

Definition 2(CBF, based on ref. [31]). Let C ⊂X ⊂R
n be the superlevel set of a continuously

differentiable function h : X →R, then h is a control barrier function (CBF) if it satisfies

ḣ(x, u) ≥ −γ h(x) (15)

for a constant γ > 0 and for all x ∈X .

We first formulate the CBFs for the system concerning the angle constraints. As shown in Fig. 2, we
denote the angle between the luggage trolley queue and each robot as ϕi for i ∈ {0, 1}. The safe operating
zones of these angles are −ϕi,max ≤ ϕi ≤ ϕi,max , i ∈ {0, 1}. For each robot, we choose the safety value
function hi: X →R as

hi(x) � 1

2

(
ϕ2

i,max − ϕ2
i

)
. (16)

Accordingly, the safe set for the entire system reads as the intersection of the zero-superlevel sets of the
continuously differentiable functions hi for i ∈ {0, 1}:

C �
⋂

i∈{0,1}
{x ∈Xfree : hi(x) ≥ 0} . (17)

Without loss of generality, we take robot i as an example. To make hi a valid CBF, we shall ensure the
following:

ḣi + γihi ≥ 0, (18)

where γi is a positive constant. Differentiating hi with respect to time, we get

ḣi = −ϕiϕ̇i

= −ϕi

(
ψ̇ − θ̇i

)
= −ϕi

(
∂ψ

∂xi

T

ẋi + ∂ψ

∂xj

T

ẋj −ωi

)
. (19)

where the first partial is associated with robot i’s state and movements and the second relates to the other
robot j’s movements. Naturally, the angle between the robot i and the luggage trolley queue is also up to
the other robot for that the other robot is simultaneously manipulating the queue as well. The first partial
in the parenthesis of Eq. (19) is

∂ψ

∂xi

=
[yj − yi

L2
,

xi − xj

L2
, 0

]T

. (20)
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Further combining the differential-drive model of each robot yields

∂ψ

∂xi

T

ẋi =
[yj − yi

L2
,

xi − xj

L2
, 0

] ⎡
⎣ vi cos θi

vi sin θi

ωi

⎤
⎦

= vi

L2

((
yj − yi

)
cos θi +

(
xi − xj

)
sin θi

)
= vi

L2
· −→L −⊥ · −→θi

= vi

L
· −→ψ −⊥ · −→θi , (21)

where −→
L = L

[
cos (ψ), sin (ψ)

]T, −→
θi = [

cos (θi), sin (θi)
]T, −→

ψ = [
cos (ψ), sin (ψ)

]T, z−⊥

denotes rotating a planar vector z by −π
2

rad, and z⊥ means a
π

2
rotation. In a similar spirit, the second

term in the parenthesis of Eq. (19) is derived as

∂ψ

∂xj

T

ẋj = vj

L
· −→ψ ⊥ · −→θj . (22)

Taking Eqs. (21) and (22) back into Eq. (19), we have

ḣi = ϕi

L

[−−→
ψ −⊥ · −→θi

L

]T [
vi

ωi

]
+ ϕi

L

[−−→
ψ ⊥ · −→θj

0

]T [
vj

ωj

]
. (23)

Now, we have the expression of ḣi. Substituting Eq. (23) into Eq. (18), we have

ϕi

L

[−−→
ψ −⊥ · −→θi

L

]T [
vi

ωi

]
+ ϕi

L

[−−→
ψ ⊥ · −→θj

0

]T [
vj

ωj

]
+ γihi ≥ 0. (24)

For notation’s brevity, we further simplify Eq. (23) by defining Ai �
[
AT

ii , AT
ij

]
, wherein

Aii �
ϕi

L

[−→
ψ −⊥ · −→θi

−L

]
, (25a)

Aij �
ϕi

L

[−→
ψ ⊥ · −→θj

0

]
. (25b)

Then, we can write condition Eq. (24) as a linear constraint with respect to control

Aiu ≤ γihi. (26)

Finally, by applying the CBF constraints of all robots, we can formulate the filter as an optimization
problem, resulting in a CBF-QP:

min
u

‖u − uCLF‖2
RCBF

, (27a)

s.t. Aiu ≤ γihi, ∀i �= j, (27b)

−umax ≤ u ≤ umax, (27c)

u ∈ U , (27d)

where uCLF is the filtered control input provided in Section 3.2.2.
Observing Eq. (27), one can see that the optimization is in a centralized sense because it involves

all of the robots’ states and controls. This optimization formulation scales poorly with respect to the
number of robots and thus is not a good choice for real-time execution. Inspired by ref. [33], we shall
resolve this problem by splitting the constraints so the CBF-QP can be solved distributedly by each robot
without compromising the theoretical guarantees.
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Here we define ui ∈ Ui for each robot analogically, where Ui ⊂R
2 is the control input space for each

robot. Splitting Eq. (27b), for each coupled pair of robots i and j (there is only one in our case), we have

AT
iiui + AT

ijuj ≤ γihi. (28)

Similarly, for CBF of robot j, we have the analogous separation with

AT
jiui + AT

jjuj ≤ γjhj. (29)

Further separating terms with respect to different robots’ controls yields

AT
iiui ≤ ηii

ηii + ηij

γihi, (30a)

AT
jiui ≤ ηji

ηji + ηjj

γjhj, (30b)

for robot i, and

AT
ijuj ≤ ηij

ηij + ηii

γihi, (31a)

AT
jjuj ≤ ηjj

ηjj + ηji

γjhj, (31b)

for robot j, where η∗∗ are positive parameters. One can always verify that adding up terms from both
sides of Eqs. (30a) and (31a) yields Eq. (28), and adding Eqs. (30b) and (31b) yields Eq. (29). For
simplicity, we denote

γii �
ηii

ηii + ηij

γi, (32a)

γji �
ηji

ηji + ηjj

γj. (32b)

Therefore, the decentralized CBF-QP for each robot to solve will bes

min
ui

∥∥ui − uCLF,i

∥∥2

RCBF,i
, (33a)

s.t. Aiiui ≤ γiihi, (33b)
Ajiui ≤ γjihj, (33c)
− ui,max ≤ ui ≤ ui,max, (33d)
ui ∈ Ui. (33e)

After being filtered by DT-CLF and CBF, the control input commands usafe will be ultimately sent to
the corresponding actuators.

4. Experiments
In this section, the experiment results of the proposed control strategy as well as the high-level global
planner are shown. The experiments consist of two parts. The first part is to verify the smoothness of
the path solved by the global planner. The second part is to verify the formation maintenance of inter-
robot distance and angles by control strategy while tracking the global path. The former is completed
on the simulation platform, while the latter is completed on both the simulation and physical hardware
platforms. For the physical experiments, we design three representative path shapes constructed by dif-
ferent initial and goal positions: straight line, right-angle curve, and U-shape curve. These shapes are
the dominating path conditions that the robots mainly deal with in real-world scenarios.
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Table I. The value of pivotal parameters.

Parameter Description Value
N MPC predictive horizon 10
c DT-CLF convergence rate 0.5
γi CBF convergence rate 5
ϕi,max Maximum steering angle for safety 50◦

(a)

(b) (d) (f)

(c) (e)

Figure 5. Simulation experiment results. For distance maintenance, the mean and standard deviation
are indicated. For angle maintenance, the safe region is shown with the boundary and green shadow.

In order to facilitate the readers who have interests to reproduce our work, Table I provides the value of
pivotal parameters and the corresponding description. Because the two robots share the same parameters,
for brevity, we use robot i to represent.

4.1. Simulation experiments
4.1.1. Planning
We use Hybrid A∗ to plan a path that conforms to the nonholonomic constraints of the system. Compared
with A∗, the path is much smoother and with better performability. We use a right-angle curve for
demonstration. The visualization of path quality is illustrated in Fig. 5(a) and (b). Obviously, Hybrid
A∗ provides a more viable path. Figure 5(b) is the path that we use in simulation experiments. The
computing time is also acceptable, which is under 100 ms on our computing platform. For the physical
experiments, the leading robot must face back to the following one to grasp the luggage trolley queue as
shown in Fig. 1. We also adjust the frame of the leading robot in simulation correspondingly.

4.1.2. Control strategy
Figure 5(c) and (d) demonstrate the distance and angle maintenance of the control strategy. The distance
between the two robots remains obviously stable near the reference, and the error (< 2 cm) is acceptable.
The mean and standard deviation of distance maintenance error are calculated by the absolute value of
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each sample in case the positive errors counteract the negative errors. In the following parts, the pro-
cesses of distance maintenance error are the same. The steering angles of the leader and follower remain
in the safe region consistently. The computing time of the safety filter is 21 ms, which is comparable to
the MPC computing time of 22 ms. That is also what we are looking for. Figure 5(e) and (f) show the
ultimate control inputs.

4.2. Physical hardware experiments
We implement the proposed planning algorithm and control strategy on physical hardware robots. The
robot-mounted computing platform is NUC with Intel i7-1165G7 CPU and 16-GB RAM. Each trans-
ported luggage trolley is with 4 omnidirectional wheels. The weight is 15 kg and the length is 790 mm for
each. We put five luggage trolleys into a queue for physical experiments. The bond of adjacent trolleys is
just by the trolley-mounted fastener without any other additional connection. The overall length of our
system is more than 2 m. For activation, we use warm-up, which accelerates the robots to the specified
control input in two seconds. The experiment results are shown in Fig. 6 and the detailed experimental
design is shown as follows.

4.2.1. Straight line
The system moves along a straight line shown in Fig. 6(a), which is the easiest and the most common
path. The proposed method achieves a distance maintenance error of less than 2.5 cm as Fig. 6(b) shows.
Figure 6(c) angle constraints bring almost no impact in this case. Only the distance constraints will
influence system formation. Figure 6(d) and (e) illustrate the control inputs of this case.

4.2.2. Right-angle curve
The system turns a right-angle curve as shown in Fig. 6(f). Distance constraints are also dominated
because the rotation angle is relatively small. Distance error is under 1.5 cm as presented in Fig. 6(g).
Figure 6(h) shows that the steering angles of two robots are also limited in the safe region obviously.
Figure 6(i) and (j) illustrate the control inputs of this case.

4.2.3. U-shape curve
The system turns a U-shape curve with about 150◦ shown in Fig. 6(k), which is the most difficult. Due
to the nonholonomic constraints and mechanical limitations, the system will deconstruct if the steer-
ing angles exceed the maximum values. According to experiment measurement, the maximum steering
angle is about 60◦ for both robots. In view of the safety margin, we set the maximum value as 50◦ in
CBF. We have tried that if CBF is removed, the system will fall apart when tracking this U-shape path.
Figure 6(l) demonstrates the distance maintenance error is under 1.8 cm. Attractively, the robot steering
angles are still located in the safe region as shown in Fig. 6(m), although the path curve is very sharp
compared with the system length. The leader’s steering angle presses close to the boundary because it
wants to turn. However, CBF guarantees that it will never exceed the safe region and further guarantees
the system’s formation. Figure 6(n) and (o) illustrate the control inputs of this case.

4.3. Summary
Both the simulation and physical hardware experiments show the effectiveness of the proposed method.
The collaborative robots can drive the luggage trolley queue to move from the initial pose to the goal
region via a smooth path. While moving, the collaborative robots can maintain the system’s formation.
The distance maintenance error is less than 2.5 cm for all the conditions. The steering angles for the
robots are always maintained in the safe region. The errors and computing times are all acceptable.
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(a)

(b)

(c)

(d)

(e) (j) (o)

(i) (n)

(h) (m)

(g) (l)

(f) (k)

Figure 6. Physical experiment results : (a)-(e) are for the straight line, (f)-(j) are for the right-angle
curve, and (k)-(o) are for the U-shape curve. For each case, the global path, distance, and angle main-
tenance effectiveness, ultimate control inputs of v and ω are provided. For distance maintenance and
angle maintenance, the processes are the same as Fig. 5.
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5. Conclusion and future work
This article proposes a divide-and-conquer control strategy for transporting a luggage trolley queue. For
the multi constraints in this problem, we decouple and solve them one by one. Before the controller,
we use Hybrid A∗ to generate a global path that considers the nonholonomic constraints. Then, we use
a real-time MPC to track the global path. Followed by a safety filter, which consists of DT-CLF and
CBF, the controller will output a usafe that can drive the system move to the designated goal region while
holding the distance and angle constraints. We verified the effectiveness of our method through both the
simulation platform and the physical hardware platform.

Subject to the precise localization of the Motion Capture System, we cannot do physical hardware
experiments in a larger environment. Therefore, we will focus on state estimation to enhance the local-
ization performance of Lidar and extend our experimental scenarios to more complex environments in
future work. Additionally, avoiding pedestrians and obstacles in dynamic environments is also the next
stage of our work.
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