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Abstract— Cooperative object transportation using multiple
robots has been intensively studied in the control and robotics
literature, but most approaches are either only applicable
to omnidirectional robots or lack a complete navigation and
decision-making framework that operates in real time. This
paper presents an autonomous nonholonomic multi-robot sys-
tem and an end-to-end hierarchical autonomy framework for
collaborative luggage trolley transportation. This framework
finds kinematic-feasible paths, computes online motion plans,
and provides feedback that enables the multi-robot system to
handle long lines of luggage trolleys and navigate obstacles and
pedestrians while dealing with multiple inherently complex and
coupled constraints. We demonstrate the designed collaborative
trolley transportation system through practical transportation
tasks, and the experiment results reveal their effectiveness and
reliability in complex and dynamic environments. (Video1)

I. INTRODUCTION

Robots are versatile tools for object manipulation and
transportation [1], and have a broad range of applications,
including industry assembly lines [2], vehicle extraction [3],
and luggage collection at airports [4], [5], etc. In many cases,
the movement of large objects requires the coordination of
multiple robots for enhanced strength or mobility. Trans-
porting a chain of collected luggage trolleys in complex
and congested environments such as international airports
exemplifies such an application. This task is challenging due
to several factors: i) the robots have to carry a long stack
of omnidirectional trolleys, ii) the operating environment
may be densely populated and with narrow corridors and
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Fig. 1. A snapshot showing a dual-robot system transporting a series of
luggage trolleys in tandem in a dynamic environment.

tight corners, and iii) the robots have to perform highly
coordinated movements to maintain the integrity of the
trolley stack.

In this paper, we present a practical multi-robot system
along with a hierarchical navigation framework for the task
of transporting a series of luggage trolleys with autonomous
robots. Two nonholonomic robots that were previously used
in our trolley collection work [5] are further adapted and
form a robot team for this transportation task. To tackle
the aforementioned challenges, we propose an end-to-end
pipeline consisting of several modules that address percep-
tion, behavioral planning, global pathfinding, and collabora-
tive motion planning. The proposed framework enables our
robot team to work collaboratively, transport a long stack of
luggage trolleys, and safely navigate complex and dynamic
environments in real time.

In this work, our contributions are threefold:
• We develop a practical nonholonomic multi-robot sys-

tem for the collaborative transportation of a series of
luggage trolleys.

• We propose a hierarchical real-time planning framework
for the safe navigation of a nonholonomic multi-robot
system, addressing intricate constraints with tight inter-
robot motion couplings.

• We demonstrate that the designed system can achieve
collaborative luggage trolley transportation in complex
and dynamic real-world environments.

II. RELATED WORK

Cooperative manipulation and transportation have been
traditionally approached as a control task, where the desired
trajectories of manipulated objects are often predefined [6].
The robots need to compute control inputs in a central
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Fig. 2. A diagram of our proposed navigation framework. It starts by measuring different sensory information, which is then processed by the perception
module. Thereafter, the planning modules perform real-time computation and provide each robot with its velocity command.

or distributed fashion to enable the manipulated objects
to track the desired trajectories or paths. A decentralized
control framework is brought forth in [7], enabling robotic
collaborative manipulation and transportation of large objects
via separating locomotion and grasping. A number of works
opt for the caging method [8], [9], in which the manipulated
object stays in the interior of the formations formed by the
robots. Without any explicit communication and with merely
local measurements, the approach along with the physical
system proffered in [10] realizes multi-robot cooperative
object transportation via force coordination under a leader-
follower paradigm. In [11], the authors provide a distributed
adaptive control algorithm for several omnidirectional robots
manipulating a rigid body to track a desired trajectory in
SE(3). However, these works all assume a priori known
reference paths or trajectories and do not provide navigation
solutions in dynamic environments. Moreover, control algo-
rithms in [8]–[11] are all designed for omnidirectional robots
without nonholonomic constraints, making them unsuitable
for many practical scenarios, such as the luggage trolley
transportation work mentioned in this paper.

The advancement of onboard computing power has un-
locked real-time deployment of optimization-based robot
planning and control methods like model predictive control
(MPC). In [12], the authors formulate the local control of
manipulating deformable objects as a convex optimization
problem and propose to solve it in a receding-horizon
fashion with a centralized/distributed planning approach.
Many studies have also investigated aerial cooperative pay-
load carrying [13], [14] and connected vehicles [15], [16].
As expected, centralized optimization scales poorly with
the number of robots. Thereupon, decentralized trajectory
optimization methods keep drawing the field’s attention.
The authors of [17] provide us with a decentralized MPC
planning and control scheme for moving polygon objects
with a set of omnidirectional robots on a plane. Though a
distributed algorithm for optimization with separable vari-
ables is leveraged in multi-robot manipulation [18], it is not

well-suited for multi-agent systems with highly nonlinear
dynamics and strong couplings. Recent study have explored
holonomically constrained collaborative locomotion [19] and
their use in collaborative manipulation of cable-towed loads
[20]. Nevertheless, none of the aforementioned approaches
fits our task, which features tight coupling and complex
constraints between robots, nonholonomic dynamics, and a
demand for high motion precision.

Previous collaborative object transportation work in simi-
lar settings to ours has mainly focused on control. Yufka and
Ozkan [21] take a formation-control perspective and propose
a virtual leader-follower control scheme enabling multiple
differential-drive robots to transport a pallet-like object. The
work in [22] investigates a decentralized control algorithm
for two nonholonomic robots without direct communication
and provides thorough theoretic analyses. The authors of [23]
employ risk-sensitive stochastic control for the same task, but
only use this approach to compute one control input for a
bi-robot system. Works in [21]–[23] all lack a systematic
navigation solution that is essential for robots to perform
the transportation task in complex, dynamic, and uncertain
environments. The closest work to ours is, perhaps, [24].
The proposed approach allows for the integration of tracking
control and obstacle avoidance. Nonetheless, the proposed
method involves multiple handcrafted attractor functions and
quite a few parameters that entail substantial fine tuning.
In contrast, our hierarchical approach in this paper features
algorithmic flexibility at different decision-making levels,
and the parameter tuning is more intuitive and practical.

III. SYSTEM DESCRIPTION

A. Framework Overview

We introduce an end-to-end autonomy framework for
robotic collaborative trolley transportation in complex and
dynamic environments. Our framework is illustrated in
Fig. 2. For perception, multiple sensors are equipped to
acquire both global and relative localization measurements,
taking uncertainty into account. The proposed hierarchical
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Fig. 3. A prototype of the trolley collaborative transportation system is
shown in Fig. 3(a), with the robot components labeled. Fig. 3(b) and (c)
illustrate the structure and kinematics of the manipulator.

decision-making module comprises three parts: i) the global
path planner, ii) the behavior selector, and iii) the collabora-
tive motion planner.

The three planning parts are built for three core objec-
tives that ensure the safety and reliability of the trolley
transportation task: kinematic-feasible trajectory generation,
obstacle avoidance, and trolley array integrity maintenance.
Starting with a 2D occupancy grid map, the global path
planner provides a sequence of navigation waypoints by
treating the entire robot-trolley assembly as a single virtual
vehicle and considering kinematic constraints. Then, the
collaborative motion planner computes online the two robots’
trajectories and velocity commands that track the reference
path fed by the path planner and accounts for a variety
of constraints, including nonholonomic dynamics, coupling
formation constraints, and control bounds. The behavior
selector evaluates the risk of collision with detected dynamic
obstacles like pedestrians nearby, and adaptively adjusts the
parameters of the motion planner or directly modifies the
velocity commands if necessary. The advantage of such
decomposition primarily resides in guaranteeing real-time
performance for solving the complex planning and control
problem with tight inter-agent couplings while still delivering
precise and highly coordinated motions.

B. Mechanical Design

We develop a multi-robot system consisting of a leader and
a follower for the collaborative trolley transportation task.

1) Components: Adapted from the previous generation of
luggage trolley collection robots [5], the leader and follower
share a similar compact structure and identical components,

including a differential-drive chassis with suspension, an
aluminum alloy frame, large-capacity batteries, wiring, mul-
tiple sensors (LiDARs, cameras, IMU, etc. ), an onboard
computer, and a manipulator, as shown in Fig. 3(a).

2) Manipulator Design: The manipulator comprises a
linear actuator and a gripper, which use leverage to grasp
a trolley’s handler or beam, as depicted in Fig. 3(c). The
manipulator’s placement is adjustable and dependent on the
height of the handler or beam being gripped. To ensure that
the gripper grasps the beam at the proper horizontal angle,
the bottom of the manipulator must be at the same height
as the beam. This placement provides a secure grip and acts
as protection preventing axial forces on the linear actuator
during transportation. As is shown in Fig. 3(a), the leader
robot’s manipulator is at a low position gripping the front
beam of the trolley, while the follower robot’s manipulator
is positioned high to grip the handler.

To enable the two robots to transport trolleys collab-
oratively along curved paths, we employ a passive joint
connecting the gripper and the robot, as shown in Fig. 3(b).
By aligning the rotation axis of the gripper with that of
the chassis, we eliminate the torque caused by the force
exerted by the trolley queue on the gripper. This design
effectively reduces the impact of the robots’ angular error
and the dynamic adjustment required by the collaborative
trolley transport system.

IV. METHODOLOGY

In this section, we elaborate our hierarchical decision-
making framework in three parts: the collaborative motion
planner, the global path planner, and the behavior selector.
In addition, we introduce how we fuse information from
multiple sources for reliable state estimation.

A. Collaborative Motion Planning

The main challenge of the collaborative transportation task
lies in the collaborative motion planning of the robot team.
The robots need to compute their control inputs such that
the robot-trolley assembly follows a desired path yielded by
the global path planning module and meanwhile, to keep the
trolleys sticking together and firmly attached to the robots.
These requirements involve multiple constraints over the
local collaborative motion planning problem. Therefore, we
opt for a nonlinear model predictive control (NMPC) based
approach. The NMPC framework provides great convenience
for posing constraints, and has been successfully used in
many robotic applications [25], [26]. In this section, we first
describe the mathematical model of the robot-trolley system
and then formulate an optimization problem for collaborative
transportation motion planning.

The robot-trolley assembly consists of two differential-
drive robots and an array of omnidirectional trolleys. Specif-
ically, one robot L, a leader, is in charge of steering the
trolleys at the head of the array, and a follower robot F
provides power and persists the formation configuration at
the tail, as shown in Fig. 4. Assuming the trolleys are
properly attached and the number of trolleys is known, we
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Fig. 4. Illustration of the robot-trolley assembly tracking a reference path.
The trolley stack is assumed to be one single rigid body.

use the two robots’ planar positions and heading angles as
the assembly system’s state and take the robots’ linear and
angular velocities as the system’s input:

x ≜
[
xL yL θL xF yF θF

]⊤ ∈ R6, (1)

u ≜
[
vL ωL vF ωF

]⊤ ∈ R4, (2)

in which {L,F} represents the role (“Leader” or “Follower”)
of each robot. Thereupon, the assembly’s kinematics is for-
mulated as two concatenated discrete-time unicycle model:

xk+1 = f(xk,uk) = xk +G(xk)uk, (3)

where

G(xk) ≜ ∆t


cos θLk 0 0 0
sin θLk 0 0 0
0 1 0 0
0 0 cos θFk 0
0 0 sin θFk 0
0 0 0 1

 ,

and ∆t is the sampling time interval. Herein, we further
denote a number of variables derived from the state. The
relative distance between the two robots is of great interest:

r ≜ ∥pL − pF ∥, (4)

where pi ∈ R2 for i ∈ {L,F} is the planar position of
a robot. Moreover, we denote the angle difference between
the orientation of each robot and that of the vector that starts
from the follower pointing at the leader as

ϕi ≜ θi − arctan2
(
yL − yF , xL − xF

)
, i ∈ {L,F}. (5)

Fig. 4 illustrates the geometrical relationships among these
variables.

Remark 1: The desired relative distance l between the two
robots is a mapping κ : N → l with respect to the number of
trolley(s) N . This quantity is assumed to be known a priori
from previous trolley collection tasks, so it is a constant here.

Remark 2: As shown in Fig. 4, the center of the trolley
stack does not necessarily coincide with the center of the
line connecting the two robots. Under the condition that the
trolleys are tightly arranged and the manipulators passively
keep the same heading angle with the trolleys, we find that
this slipping between manipulators and trolleys is negligible
for motion planning in practice.

Now we pose the collaborative motion planning problem
as an NMPC problem as follows:

min
{x,u,ε}

JT(xT ) +

T−1∑
k=0

JS(xk,uk, εk) (6a)

s.t. xk+1 = f(xk,uk) (6b)
x0 = xinit (6c)
|rk − l| ≤ εk (6d)
xk ∈ X (6e)
uk ∈ U , (6f)

where JT is the terminal cost, JS is the stage cost, and εk is
a slack variable.

The constraints are, from top to bottom, respectively: (6b)
the kinematics constraint from (3); (6c) initial conditions;
(6d) the relative distance constraint, relaxed by a slack
variable to avoid infeasibility; (6e) workspace constraints;
(6f) admissible control constraints, in which the robots’
velocities are bounded in the sense of |vi| ≤ vimax, and
|ωi| ≤ ωi

max, and accelerations are bounded via discretization
as well |vik+1 − vik| ≤ aimax, |ωi

k+1 − ωi
k| ≤ αi

max.
The objective function (6a) contains several quadratic

costs for path tracking and formation maintenance. Path
tracking is achieved by employing a pure pursuit strategy
encoded in the terminal cost:

JT(xT ) =
∥∥pL

T − pL
ref

∥∥2
PL

T

+
∥∥pF

T − pF
ref

∥∥2
PF

T

, (7)

where ∥x∥A ≜
√
x⊤Ax. Reference positions pi

ref are
derived from the waypoints qd

n =
[
xd
n ydn θdn

]⊤
for n =

0, 1, . . ., produced by the global path planner via
pL

ref =
[
xd + l

2 cos θ
d yd + l

2 sin θ
d
]⊤

pF
ref =

[
xd − l

2 cos θ
d yd − l

2 sin θ
d
]⊤

.

(8)

For stabilizing the formation of the robot team in order to
keep the trolley stack’s integrity, we design the stage cost as

JS(xk) = λr
k

∣∣r2k − l2
∣∣2+λϕ

k

(
ϕF
k

)2
+ ∥uk∥2Rk

+wkε
2
k. (9)

The first term intends to stabilize the distance to the de-
sired value and contain the follower robot’s orientation to
line up with the trolley array. The second term penalizes
control efforts and the last term punishes the slack on the
distance error. All coefficients P i

T , Rk, λ
r
k, λ

ϕ
k , , and wk are

positive(-definite).

B. Global Path Planning

It is necessary to equip our system with a global path
planner because the system is supposed to operate at po-
tentially large-scale venues like international airports. To
guarantee kinematic feasibility, we first model the robot-
trolley assembly as a car-like virtual vehicle and then find
an obstacle-free path given a 2D occupancy map of the
operating environment. In this work, we define the reference
path D ⊂ R3 as a series of waypoints qd

n ≜
[
xd
n ydn θdn

]⊤
8049
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Fig. 5. Finite-state automaton diagram of the behavior selector module. γ
represents the detected obstacle which is defined as 3 types by its position
and determines the transitions between the 4 modes. The FSA starts in the
Navigation mode and ends in the Waiting mode.

for n = 0, 1, . . ., representing desired planar positions and
global orientations of the robot-trolley assembly.

The choice of the path planner is flexible, and we employ
the Hybrid A∗ planner [27] for simplicity. The adopted
kinematics adapted from a bicycle model is as follows

xk+1 = xk + v∆t cos(θk + βk)

yk+1 = yk + v∆t sin(θk + βk)

θk+1 = θk +
v cosβk

l
∆t

(
tanϕL

k − tanϕF
k

)
βk = arctan

(
1

2
(tanϕL

k + tanϕF
k )

)
,

(10)

where q =
[
x y θ

]⊤
is the 2D pose of a chosen reference

point attached on the robot-trolley assembly, v denotes the
tangent velocity, ϕL and ϕF are the front and rear “steers”
of the assembly, respectively, and l is the desired distance
between the two robots. To increase searching speed, we hold
the tangent velocity v as a reasonable constant, and let the
planner uniformly sample feasible steer control [ϕL, ϕF ] to
extend the virtual vehicle’s poses between searching grids.
The resulting path will serve as a sequence of waypoints and
be sent to the motion planning module.

C. Behavior Selector

Operating in densely populated environments like interna-
tional airports, the robotic system needs to ensure safety and
must not bump into people. We identify that it is clumsy,
unsafe, and even intimidating for the robots carrying a long
array of trolleys to actively perform aggressive maneuvers
for obstacle avoidance in such environments. In light of this
finding, we propose a finite-state automaton (FSA) to manage
the robots’ behaviors.

Concretely, we categorize the robots’ behaviors in four
modes— Navigation, Deceleration, Waiting, and Limited
Navigation— and each mode consists of a state in the
proposed FSA as shown in Fig. 5. The transition between
states depends on the relative position between the leader
robot and detected dynamic obstacles in its vicinity. The
region of interest (ROI) for dynamic obstacles detection
covers an area O =

{
γ = (ρ, δ)

∣∣ ρ ∈
[
ρ, ρ

]
, δ ∈

[
π
3 ,

5π
3

]}
,

where γ = (ρ, δ) is the polar coordinate of a detected
dynamic obstacle with the origin on the leader. When there
is no dynamic obstacles in the ROI, i.e., ∀γ /∈ O, the robots

are in the Navigation mode and the motion planner works
as default. If obstacles are in the front blocking the robots’
way, that is, ∃γ ∈ O1 = {γ | δ ∈

[
2π
3 , 4π

3

]
}, the robots

transit to the Deceleration mode and smoothly slow down
for a stop. As the robots’ velocities gradually decrease to
a neighborhood of 0, the robots are in the Waiting state,
making way for surrounding dynamic obstacles like humans.
The Limited Navigation mode is activated for smooth braking
and starting when the robots perceive humans on either side
of the robot-trolley assembly (∃γ ∈ O2 = O\O1∧∀γ /∈ O1).
In this mode, the robots move with a lower speed limit. The
robots will switch back to Navigation if the detected humans
move away, or enter Deceleration if any person moves from
the side to the front.

D. State Estimation

It is of paramount importance to have reliable information
on the robots’ states due to the demand for high motion preci-
sion for formation maintenance in this transportation task. As
such, aside from using LiDARs, IMUs, and odometry for the
localization of each individual robot, we have added markers
on the leader robot so that we can measure the relative pose
between the two robots from the follower with its LiDAR
readings.

We adopt an extended Kalman filter (EKF) to fuse partial
information coming from different sources: the localization
modules on two robots and the relative pose measurement.
The system’s discrete state-space representation is:

xk+1 = f(xk,uk) = xk +G(xk)uk + vk

yL
k+1 = HLxk+1 +wL

k+1

yF
k+1 = HFxk+1 +wF

k+1

y∆
k+1 = H∆xk+1 +w∆

k+1,

(11)

where

HL ≜
[
I3 0

]
, HF ≜

[
0 I3

]
, H∆ ≜

[
I3 −I3

]
.

yi
k ∈ R3 for i ∈ {L,F} are pose measurements obtained

from the robots’ localization modules; y∆
k ∈ R3 is a relative

pose measurement. We assume that all noises follow zero-
mean Gaussian distribution and are independent of one
another, i.e., vk ∼ N (0,Vk), wi

k ∼ N (0,W i
k) for i ∈

{L,F,∆}. Since we perform local motion planning in a
centralized fashion, the prediction step is standard as that
of any EKF. Measurements update at different frequencies,
so we perform update steps asynchronously whenever an
observation comes in. In practice, we find this fusion of
multi-source information critical to the smooth functioning
of the motion planner and facilitative of highly cooperative
operation of the robots.

V. IMPLEMENTATION AND EXPERIMENTS

We present experimental results to validate the effective-
ness of the proposed collaborative motion planning module
and demonstrate our trolley transportation system in complex
and dynamic environments.
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area represents the error’s 2σ-margin.

A. Implementation Details
1) Robot Setup: We use two autonomous robots to per-

form collaborative trolley transportation as mentioned in
Section III-B. Our framework is implemented in Python and
integrated through Robot Operating System (ROS Melodic).
Each robot is equipped with an Intel NUC (specs: Core
i7-1165G7 CPU@4.70GHz, 32GB RAM) to perform all
computations online. Onboard sensors include an Ouster
OS1 128-channel LiDAR and a 9-axis IMU. Both robots
communicate through a wireless ad-hoc network with their
onboard WiFi routers.

2) Localization: Each robot runs its own global locali-
zation via AMCL [28] with a 2D occupancy map built a
priori using GMapping [29]. For high-fidelity measurements
of the robots’ relative position, we install a cylinder marker
with unique reflectivity at the leader’s rotation center. The
follower then extracts the marker’s position from the LiDAR
scan points and takes it as the leader’s position.

3) Planning: The global path planner is set up with
0.25m × 0.25m × 15◦ resolution, and the virtual vehicle’s
size is slightly expanded for safety. The motion planner runs
at approximately 30Hz with a horizon of T = 20 steps, each
discretized by ∆t = 0.1s. The MPC problem is formulated
by CasADi [30] and solved with IPOPT [31] on one robot’s
onboard computer in real-time.

B. Collaborative Motion Planning Evaluation
To test the tracking performance of our collaborative mo-

tion planning method, we conduct a real-world experiment
transporting three trolleys to track a given reference path
in a motion capture area without obstacles. An OptiTrack
motion capture system is used to provide precise localization
feedback and validation. The reference path consists of 30
waypoints sampled from a concatenation of two arcs both
with a 0.44m−1 curvature.

Start

Global 
Path

Robot-Trolley 
Assembly

Goal

Pedestrian 

Pedestrian 
Trajectory

Fig. 7. A top-view visualization illustrating our experiment setup. The
global path is painted orange. Static obstacles in the occupancy map are
represented by black points. The gray cylinders (circles in this figure)
represent detected pedestrians and grey dotted lines denote their trajectories.
The robots autonomously find the global path (orange curve) of the whole
assembly and plan their own motions.

The tracking results are shown in Fig. 6. In this ex-
periment, we focus on the X-Y position of a reference
point attached on the robot-trolley assembly (in orange).
The experiment starts at (0, 0) and the robots transport
trolleys along the predefined reference path to the goal region
with a center at (4.5, 4.2). The two robots accomplish the
collaborative transportation task in 12.2s with an average
velocity of 0.491m/s, and stop when the distance to the goal
is within 0.3m. Along the entire way, the tracking error is
2.77± 1.68cm with a maximal error of 5.66cm. 2

C. Trolley Transportation Demonstration

To demonstrate the practical applicability of our proposed
system for trolley transportation in real-world environments
such as airports or supermarkets, we conduct experiments
in complex and dynamic scenarios where the robots need to
transport multiple trolleys while navigating through cluttered
static obstacles and pedestrians. Fig. 7 illustrates the graphic
representation of one experiment’s setup. As a result, the
snapshots, the relevant data, and the visualization of the
experiments are shown in Fig. 8.

1) Narrow Space: In this scenario, the robots are collabo-
ratively transporting 5 trolleys across a narrow space stuffed
with 6 static obstacles and 3 pedestrians. The trolley stack is
1.98m long and weighs around 100 kg. It is not easy even
for an adult to manually handle a queue of more than five
trolleys in such a complex environment.

As expected, the path planner successfully identifies a
smooth global path, which is denoted as the orange curve in
the visualization in Fig. 8(a). Although the obstacles result
in a serpentine path with several turns almost to the robot-
trolley assembly’s kinematic limit, the robots operate around
their full speeds vFmax = 0.7m/s, vLmax = 0.6m/s when the

2The tracking error is defined as the Euclidean distance between the two
curves. For tracking error calculation only, the reference path which contains
30 waypoints is densified via cubic interpolation.
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(a) Experiment of collaborative transportation of five trolleys in a cluttered narrow space.
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(b) Robots’ velocities, bearing angles, and the relative distance error in the cluttered narrow space.

(c) Experiment of collaborative transportation of eight trolleys in presence of more pedestrians around.
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(d) Robots’ velocities, bearing angles, and the relative distance error in the populated space.

Fig. 8. Snapshots and visualization of the proposed system working in two typical scenarios: narrow spaces and crowded spaces. In both scenarios, the
visualization shows the robot-trolley assembly (green, blue, and red cubes), the global path (orange), the local motion plans of each robot (light purple),
and the nearest detected pedestrian (gray cylinder). Three metrics of interest were also recorded: robots’ linear velocities, bearing angles, and the relative
distance error. The light blue shades denote times when the behavior selector takes effect to yield for humans; light green shaded areas indicate the distance
errors’ 2σ-margins. The proposed framework clearly empowered our system to safely and smoothly perform collaborative trolley transportation tasks.

path is clear of dynamic obstacles. As pedestrians get in the
way, the proposed behavior selector kicks in so the robots
smoothly stop, firmly hold the trolleys for safety, and resume
moving when the path gets clear, just as is shown in the
shaded areas of the velocity plot in Fig. 8(b), starting at
time t ∈ {15.8s, 36s, 46s}, respectively.

Another critical requirement for successful transportation
is to maintain the trolley array’s integrity, which is reflected
by the relative pose of the two robots. Since the robots’
manipulators are not rigidly fixed on the trolleys, large
variations in the relative distance or orientation difference
between robots will cause detachment or structural damage.
Deriving from the relative pose measured by the proposed
LiDAR-marker detection method, Fig. 8(b) shows the error
to the desired distance ep = 1.49±2.03 cm and the difference
between the orientation of the trolley stack and those of both

robots are well kept within the range of ±45◦.
2) Populated Space: This scenario involves two robots

transporting 8 trolleys with a total length of 2.56m in a
broad hall filled with more moving humans. The velocity
limits are set as vFmax = 0.58m/s, vLmax = 0.5m/s, and the
acceleration is smaller. As presented in Fig. 8(c), the robot-
trolley assembly successfully avoids all obstacles, makes way
for several humans, tracks the reference path, and reaches
the goal position. The fluctuations in the follower’s velocity
depicted in Fig. 8(d) indicate the adjustment to keep the
trolleys stuck tight. The relative distance error ep to the
desired distance is 0.255± 2.36 cm. 3

These two experiments manifest the effectiveness of the
proposed multi-robot system and demonstrate that our au-

3The range accuracy of the Ouster OS1 LiDARs on the robots is 2.5 cm.
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tonomy framework can provide highly cooperative motions
despite a variety of underlying complex constraints for safe
and smooth operation in collaborative trolley transportation.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a hierarchical navigation framework
and integrates it into an autonomous multi-robot system
designed for collaborative trolley transportation. By dividing
the various inherent constraints and tackling them at different
decision-making levels, our framework is robust and fast
enough to provide real-time solutions for the challenging
collaborative trolley transportation task. We demonstrate the
proposed system to achieve cooperative trolley transportation
in different scenarios. Experimental results have exhibited the
efficacy and reliability of the proposed method and hardware
system in cluttered and populated dynamic environments.

In the future, we will proceed with socially-aware motion
planning and more large-scale outdoor realistic experiments.
Moreover, we shall actively explore decentralized solutions
of our framework to improve robustness and scalability.
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