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Abstract— Autonomous mobile manipulation robots that can
collect trolleys are widely used to liberate human resources and
fight epidemics. Most prior robotic trolley collection solutions
only detect trolleys with 2D poses or are merely based on spe-
cific marks and lack the formal design of planning algorithms.
In this paper, we present a novel mobile manipulation system
with applications in luggage trolley collection. The proposed
system integrates a compact hardware design and a progressive
perception and planning framework, enabling the system to
efficiently and robustly collect trolleys in dynamic and complex
environments. For perception, we first develop a 3D trolley
detection method that combines object detection and keypoint
estimation. Then, a docking process in a short distance is
achieved with an accurate point cloud plane detection method
and a novel manipulator design. On the planning side, we
formulate the robot’s motion planning under a nonlinear model
predictive control framework with control barrier functions
to improve obstacle avoidance capabilities while maintaining
the target in the sensors’ field of view at close distances. We
demonstrate our design and framework by deploying the system
on actual trolley collection tasks, and their effectiveness and
robustness are experimentally validated. (Video1)

I. INTRODUCTION

Robots have become popular in people’s lives because
they can complete tedious and complex tasks autonomously
or collaboratively. In this paper, we discuss a robotic au-
tonomous trolley collection system designed for trolley col-
lection at airports.

At airports, passengers usually use luggage trolleys to help
carry luggage between gates and arrival/departure. For exam-
ple, Hong Kong International Airport (HKG) has an annual
passenger flow of more than 72.9 million passengers and
has approximately 13,000 luggage trolleys[1]. Naturally, for
the convenience of passengers, collecting and redistributing
these trolleys has become a vital but laborious task. Most
airports, including HKG, still require considerable human
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Fig. 1: An autonomous robot detecting a trolley, safely navigating
itself among people and obstacles, and collecting the trolley and
transporting it to a designated location.

resources to collect trolleys and return them to designated
locations for continued use. However, the labor costs incurred
by such human-driven operations are huge and continue to
grow, especially in developed regions. Therefore, the robotic
autonomous trolley collection system provides a promising
and cost-effective solution for tedious and expensive tasks.

In addition, with the outbreak of COVID-19, large interna-
tional airports such as HKG have become high-risk areas for
the spread of the virus. Airport staff working with trolleys
are at risk of infection because the coronavirus can last for
several days, even on inanimate objects including trolleys.
Therefore, without human contact and intervention, robotic
autonomous trolley collection will be another effort to break
the chain of virus transmission as the pandemic escalates.
In this paper, we focus on developing a robotic autonomous
trolley collection system that integrates mechanical design,
perception and planning, with the ability to navigate and
reliably collect trolleys in complex environments.

A. Related Work

An autonomous mobile manipulation robot that can find
and manipulate objects, as shown in Fig. 1, is an engineering
challenge featuring sophisticated incorporation of multiple
modules, including mechanical design, perception, planning,
and control. The design of mobile manipulation platforms
has been an active research area. A few researchers take the
approach of equipping mobile robots with robot arms, rep-
resented by the DLR-HIT-Hand[2], PR2[3] and TIAGo[4].
However, these platforms are designed for a universal pur-
pose using their sophisticated manipulators, so they lack
reliability when performing repetitive tasks, e.g., collecting
trolleys at airports. The first robotic trolley collection solution
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is introduced in [5]. The developed prototype has several
sensors and a fork manipulator to lift a trolley. Nonetheless,
the lifting process is open-loop since there is no feedback
sensor in the manipulator. In our new design, we add sensors
to introduce feedback detecting sudden impacts encountered
by the manipulator.

For visual perception, learning-based 2D object detection
such as Fast R-CNN[6] and YoloV5[7] has been well in-
vestigated in recent years. These real-time object detection
models endow mobile robots with the ability to localize
specific targets in complex environments. In [5], the authors
use a trained R-CNN model to detect a trolley, and the robot
moves towards the trolley while maintaining a bounding box
of the target in the middle of the image. For accurate manip-
ulation tasks, however, merely perceiving 2D information of
the target is not enough. The method in [8] relies on markers
pasted on the trolley despite its exploration in monocular 3D
trolley detection. In autonomous driving, many researchers
attempt to fully explore the potential of RGB images for 3D
detection by recovering 3D objects from key points[9], [10].
A key drawback of such methods is that when the target is
too close to the camera, the limitation of the camera’s field of
view will cause failure in detection. In our method, to address
the above shortcomings, we incorporate 2D detection and key
point detection to estimate the 3D pose of a trolley at a long
distance and leverage LiDARs to detect the backplane of the
trolley at a short distance.

For planning and control, there are some previous efforts at
the trolley collection task. In [11], [5], the adopted method
is visual servoing. The main disadvantage of such method
is that it does not consider obstacle avoidance and safety,
leaving another critical task on the to-do list upon field
deployment. The work of [12], [1] focuses on task assign-
ment and smooth-path generation for multiple robots with
nonholonomic constraints, but safety is not a general con-
sideration in the planning framework and the final docking
error is not taken into account. Recently, optimization-based
planning strategies such as model predictive control (MPC)
have gained their prevalence in mobile robot planning and
control[13]. There are also breakthroughs on tackling real-
time safety guarantees for MPC with control barrier functions
(CBFs)[14], [15], [16]. CBFs are useful tools for integrating
safety considerations as constraints into the general MPC
framework. In our work, we formulate our motion planning
problem under an MPC framework with obstacle avoidance
constraints and field-of-view constraints, and it is validated
more efficient and robust than the state of the arts concerning
robotic autonomous trolley collection.

B. Contributions

This work offers the following contributions:
1) A novel robotic autonomous trolley collection system

integrating a mechanical system and an efficient auto-
nomy framework.

2) A progressive perception strategy involving long-
distance keypoints-based monocular 3D detection and
short-distance accurate pose estimation using LiDARs.

3) A safety-critical motion planner formulation under a
nonlinear model predictive control framework with
CBFs considering obstacle avoidance and field-of-view
constraints.

4) Experimental demonstration in complex and dynamic
environments of our system detecting target trolleys and
safely collecting the trolleys.

II. SYSTEM DESIGN

The robots for collecting luggage trolleys in the airport
need to replace trolley collectors to complete many tasks.
Most of these tasks are very complex and challenging for a
robotic system, so we specially designed a highly integrated
hardware and software system suitable for trolley collection
tasks in crowded environments.

A. Mechanical System

Fig. 2: The robot consists of three main functional modules, namely,
the chassis module (Fig. 2(c)), the sensors module (Fig. 2(a)),
and the manipulator module (Fig. 2(b)). In addition, the robot is
equipped with a high-performance computer and a large-capacity
battery to support stable operation (see Fig. 2(a)).

The developed robot for luggage trolley collection, shown
in Fig. 2, is 1.2m high with 0.07m ground clearance, 0.45m
long, and 0.416m wide. As an integrated robotic system with
mobile operation functions, the performance of movement,
loading, and operation must be considered in the design.

1) Chassis: The two front wheels are driving wheels,
shown in Fig. 2(c). Each driving wheel comprises a DC servo
motor, a reducer, and a wheel, producing 31.75N.m of torque.
The rear wheels are two universal wheels connected to the
car body by a suspension system.

2) Sensors: For perception and localization, the robot
is equipped with a 3D LiDAR, two 2D LiDARs, a solid-
state LiDAR, and an RGB-D camera, as shown in Fig. 2(a).
Due to adequate battery performance and sufficient onboard
computing power, further extension of sensors and other
equipment can be installed as required.

3) Manipulator: The manipulator is particularly designed
for catching a luggage trolley in airports, shown in Fig. 2(b).
It is installed at the front of our robot and consists of a
support base, a fork, a draw-wire encoder , and a DC reducer
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motor. The motor lifts the fork in a rotating manner around a
pivot, and the draw-wire encoder serves as a feedback source
for calculating the position of the fork based on the length
of the wire.

The length variation ∆l of the wire reflects the speed
and state of the fork movement. The length of the wire
l can be used to judge whether the fork is close to the
designated position, and ∆l can be used to judge whether
the fork is blocked or has grasped the trolley. Hence, by
periodically detecting l from the draw-wire encoder and
through differential calculation, we can construct a feedback
control system for the manipulator.

B. Autonomy Framework

Fig. 3: Autonomy framework overview.

Fig. 3 illustrates our navigation and collection autonomy.
We propose a hierarchical framework to break the robotic
autonomous trolley collecting process into three stages.

(a) approaching stage (b) docking stage (c) returning stage

Fig. 4: Illustration of the three stages of our framework. (a) At the
approaching stage, the robot detects the trolley at long distances
and navigates safely in crowded environments. (b) At the docking
stage, the robot catches the trolley with fine motions. (c) At the
returning stage, the robot transports the trolley to a returning spot.

In the approaching stage shown in Fig. 4(a), the robot
moves in a crowded environment and finally gets to the back
of a target trolley and shares the same orientation as the
trolley. An RGB-D camera is used at this stage to perceive
the trolley’s position and orientation at a fairly long distance.
The planner generates a motion trajectory to approach the
trolley while avoiding obstacles in the dynamic environment.
In the docking stage (see Fig. 4(b)), the robot continues
to move towards an ideal docking position precisely and
then catches the trolley with its manipulator. At this stage,
the robot should accurately get to the docking position so
that the final aligning error can be small enough for a
successful catch. When the robot arrives at the exact docking
location, the planner will give the low-level manipulator
controller an action command to perform the final catch.

After successfully capturing the target trolley, the robot
carries the trolley to a designated returning spot, as Fig. 4(c)
shows. During all stages, an occupancy grid map is built with
the Gmapping package[17], and the AMCL[18] localization
is utilized to estimate the robot’s states in the world frame.

III. PROGRESSIVE PERCEPTION AND PLANNING
STRATEGY

In this section, we characterize our trolley collection
strategy as a two-stage process based on the distance between
the trolley and the robot. The collection task is simplified
to a planar model since we assume that the trolley and the
robot are in the same plane. At long distances, we utilize a
monocular camera to detect the trolley and roughly estimate
its three dimensional pose qtar = [xtar, ytar, θtar]

T , wherein
ptar = [xtar, ytar]

T denotes the trolley’s position and θtar
represents its orientation. At short distances, the trolley’s
pose is precisely estimated by using a LiDAR.

A. Monocular 3D Trolley Detection at Long Distance

Fig. 5: In the monocular 3D pose detection, a source image is
first downsampled and put into an object detection net, then the
detected trolley is cropped out from the original image and put into
a keypoint detection net, and eventually the detected keypoints are
used to solve a PnP problem.

The monocular 3D detection framework consists of three
parts as shown in Fig. 5. First, we use an object detection
network to find a 2D bounding box of the target trolley
from a downsampled RGB image Is ∈ RWs×Hs×3. Then,
from the original high-resolution image I ∈ RW×H×3, we
crop the trolley image with the bounding box and get a new
image Ic ∈ RWc×Hc×3 . Second, instead of predicting the 3D
pose of the trolley directly, we use a deep neural network to
predict six 2D keypoints (red points in Fig. 5) in the cropped
image Ic. Finally, with the a priori known 3D coordinates
of the 2D keypoints, we can calculate the corresponding 6D
pose by minimizing the reprojection error of the keypoints
in the original image I .

Specifically, in the first part, we choose YOLOV5[7] as
our network model for real-time trolley detection due to its
efficiency in object detection. In the second part, inspired by
the human pose estimation[19], we adopt the stacked hour-
glass network structure to estimate the heatmaps of six 2D
keypoints p̂ci = [x̂ci , ŷ

c
i ]
T for i = 0, 1, . . . , 5, in the cropped

image Ic. Then we can get the corresponding homogeneous
2D keypoints p̂i = [ûi, v̂i, 1]T for i = 0, 1, . . . , 5, in image
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coordinates of the original image I . In the third part, we
solve a perspective-n-point (PnP) problem[19] to obtain the
pose of the trolley. According to the perspective projection
model for cameras, we have the following relationship

sipi = KXc
i = K

[
R | T

]
Xt
i , i = 0, 1, . . . ,M (1)

where Xc
i = [xci , y

c
i , z

c
i , 1]T and Xt

i = [xti, y
t
i , z

t
i , 1]T

represent the homogeneous 3D coordinates of the keypoints
in the camera’s frame and the trolley’s frame, respectively; K
is the intrinsic camera matrix that projects Xt

i to the image
point pi = [ui, vi, 1]T in homogeneous image coordinates;
si is a scale factor. Then, we solve the PnP problem to
get a 3D rotation R and a 3D translation T from the
trolley’s frame to the camera’s frame by adopting the EPnP
algorithm[20]. Eventually, with localization information of
the robot base and the relative pose of the trolley in the
camera frame, we can calculate the global state of the trolley
qtar = [xtar, ytar, θtar]

T . Moreover, a filter is performed to
avoid sudden changes in detection results since the trolley
should be static most of the time. If the trolley is not in the
camera’s field of view (FoV), the state of the trolley is set
to be the same as the last time when it was within the FoV.

B. LiDAR-Based Pose Estimation in Short Distance

Fig. 6: Accurate trolley pose estimation enabled by plane detection
using a solid-state LiDAR.

During docking, accurate perception of the trolley’s pose
is vitally crucial. Fig. 6 illustrates our perception strategy
at this stage. We use a solid-state LiDAR to yield a point
cloud, and then perform plane detection and fitting with those
points of the cloud to estimate the precise pose of the trolley.
The obtained point cloud is noted by P = {p1, p2, . . . , pn}
where pi ∈ R3 for i = 1, . . . , n, with n being the total
number of points. To get an ideal point cloud characterizing
the backplane of a trolley, the robot should be at a suitable
pose. Empirically, we set the robot facing the backplane
close behind the trolley (0.3m∼2m). Since the trolley’s pose
obtained at the approaching stage is with a decimeter-level
precision, equipped with a good enough motion planner,
which we will show in Section III-C, our LiDAR’s FoV
is large enough to ensure the backplane will be presented
entirely in the point cloud.

To estimate the trolley’s pose qtar at a centimeter-level
precision, we filter out interference points by setting a
threshold. After that, we conduct plane fitting through the
RANSAC algorithm[21] and get a set of plane points Pplane =
{p1, p2, ..., pM} ⊆ P and 4 parameters a, b, c, and d in the
plane equation aX + bY + cZ + d = 0. With the plane
parameters and the plane points, we may estimate the center
point and the yaw angle of the back plane by calculating
the center point of the filtered point cloud and the normal

vector of the plane. After obtaining the trolley’s 3D pose qtar,
we can then figure out a manipulation pose for the robot to
collect the trolley.

C. Safety-Critical Motion Planning with FOV Constraints

This planning part considers two main problems, videlicet,
generating a feasible state and control trajectory, and avoid-
ing unsafe actions in crowded environments. In both stages
of the collection process, the robot needs to move to a given
goal state xgoal = [xgoal, ygoal, θgoal]

T . Concretely, the goal
state at the approaching stage is at a position behind the
trolley and an orientation same as the trolley, while at the
docking stage, the goal state is an ideal pose for the robot
to operate manipulator.

In this work, we characterize the safe set C of states as the
zero-superlevel set of a continuously differentiable function
h : X ⊆ R3 → R

C = {x ∈ X : h(x) ≥ 0}. (2)

Safety, in our case, has a physical meaning of avoiding
all static and dynamic obstacles. To do so, we can keep
the distance between the robot and any obstacles beyond a
specific range. Therefore, it is natural to define the following
function to construct our safe set C

hob(x) = (x− xob)2 + (y − yob)2 − d2safe (3)

where xob = [xob, yob]T denotes the position of any obstacle
and dsafe a predefined safety distance.

Fig. 7: Illustration of the maintain-field-of-view requirement.

At the docking stage, it is preferable to let the trolley
remain in the FoV of the solid-state LiDAR. As is shown
in Fig. 7, ~et is a unit vector starting from the robot and
pointing at the trolley; ~er represents a unit vector in the
direction of the robot’s orientation; θmax is the maximal angle
between these two vectors at which the trolley stays within
the LiDAR’s FoV. To meet this requirement of maintaining
observation, we define the following function that we will
use later in our planning formulation:

hview(x) = ~et · ~er − cos θmax. (4)

Then, we introduce CBF constraints [14], [15]

∆h(xk,uk) + λkh(xk) ≥ 0, (5)

where ∆h(xk,uk) := h(xk+1) − h(xk) with λk ∈ (0, 1].
This kind of constraints ensures h becomes a discrete-time
CBF, which means the safe set C defined in (2) is invariant
along the trajectories of a discrete-time dynamic system.
Also, one can find that (5) guarantees the lower bound of
h decreases exponentially at time k with the rate 1− λk.
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We formulate the planning task as a nonlinear model
predictive control (NMPC) problem. At the approaching
stage, the formulation has the following form:

min
{xk,uk}

‖xN − xgoal‖2Pf
+

N−1∑
k=0

‖uk‖2Qu
(6a)

s.t. xk+1 = f(xk,uk) (6b)
x0 = xinit (6c)
xk ∈ X ,uk ∈ U (6d)

∆hiob(xk,uk) + λkh
i
ob(xk) ≥ 0 (6e)

where ‖x‖A :=
√

1
2x

TAx, and the two positive definite
matrices Pf and Qu are respectively coefficients measuring
terminal costs and running control costs. (6a) minimizes the
quadratic cost function over a horizon of N steps. In (6b),
we use the differential-drive model as the robot’s system
model. (6d) constrains the states and control inputs in a
reachable state set and an admissible control set, respectively.
Constraint (6e) is for obstacle avoidance.

At the docking stage, the formulation is similar:

min
{xk,uk,δk}

‖xN − xgoal‖2Pf
+

N−1∑
k=0

‖uk‖2Qu
+ wδ2k (7a)

s.t. xk+1 = f(xk,uk) (7b)
x0 = xinit (7c)
xk ∈ X ,uk ∈ U (7d)

∆hiob(xk,uk) + λkh
i
ob(xk) ≥ 0 (7e)

∆hview(xk,uk) + µkhview(xk) ≥ δk (7f)

At this stage, we describe the states at which the trolley
remains in the robot’s FoV as a safe set defined by joining
(2) and (4). Similar to the obstacle avoidance constraint (7e),
the maintaining observation requirement is formulated as the
constraint (7f). To avoid infeasibility, we introduce a slack
variable δ and minimize it by the cost term wδ2.

Upon implementation, these optimization problems are
formulated in CasADi[22] and solved with IPOPT[23].

IV. IMPLEMENTATION AND EXPERIMENTS

A. Perception System Evaluation

1) Data Set: To ensure the robustness of the detection
task at long distances, we built our own data set for network
training. For object detection, we collected 1,200 pictures of
the trolleys with different illumination, backgrounds, angles,
etc. These pictures were all labeled with 2D bounding boxes
around the trolleys. The data set was divided into three parts,
namely, 800 for training, 200 for validation, and 200 for
testing. For key points detection, we prepared 800 pictures
of the cropped trolleys images with accurate key point labels.
Similarly, we arranged 600 images for training, 100 for
validation, and another 100 for testing.

2) Implementation Details: We implemented and trained
our monocular 3D trolley detection networks offline using
PyTorch on an Intel machine with an i7-9750H CPU and
an NVIDIA GTX 1660Ti GPU. Our 2D detection network
is adapted from the official code releases of YOLOV5 [7].
Training this network on our own data set, we adopted the
SGD optimizer[24] for 300 epochs in total with a batch size
of 16. The base learning rate was 0.01, and we reduced
it to 0.001 from the 150th epoch and to 0.0001 from the
200th epoch. The training stage of the object detection
net lasted for roughly 14 hours. For key points detection,
we used a stacked hourglass network with PyTorch upon
implementation. To improve the generalization ability of our
model, we leveraged data augmentation techniques such as
random scaling, cropping, flipping, and color transformation.
During training, we run the Adam[25] optimizer with a base
learning rate of 0.0001 for the first 200 epochs, and reduced
it at a decreasing rate of 0.95 every 10 epochs later on.
Finally, it took about 4 hours to train our key points detection
network with a batch size of 8. At short distances, our method
based on plane detection does not involve learning, so we
implemented it with the Point Cloud Library[26].

Fig. 8: Comparisons between the ground truth pose of a moving
trolley and results of our 3D monocular method. These four
subfigures represent the x coordinate, y coordinate, orientation θ,
and position trajectory respectively.

3) Perception Results Evaluation: To verify the effective-
ness of our perception strategy, we conducted experiments
moving a trolley in irregular motions and comparing the
3D poses detected by the robot with ground truths mea-
sured by a motion capture system. First, we tested our 3D
monocular method used in long-distance perception, and we
show comparisons between the perceived poses of a moving
trolley and the ground truth in Fig. 8. The average estimate
error in position is 0.17m with a variance of 0.0097m2,
and the average estimated angle error is 0.11rad with a
variance of 0.0085rad2. Then the proposed short-distance
LiDAR method based on plane detection is also validated,
and the results are presented in Fig. 10. The average estimate
error in position is 0.03m with a variance of 0.0002m2 and
the average estimate error in orientation is 0.02rad with
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(a) safely approaching the target (b) proceeding to the docking pose (c) collecting the trolley (d) returning the trolley

Fig. 9: Snapshots of demonstration of our system conducting an actual trolley collection task. (a) When the robot was approaching the
trolley, a human with a suitcase moved across the robot’s route right in front of it. (b) The robot then slowed down, adjusted its route
to avoid the human and other obstacles, and arrived at the goal position for docking. (c) The robot reached the exact manipulation pose
based on its own perception and planning in real time. (d) After a successful capture, the robot carried the trolley to the returning spot.

Fig. 10: Comparisons between the ground truth pose of a moving
trolley and results of our LiDAR-based plane detection method.

a variance of 0.00036rad2. In all, the perception module
can provide accurate information for further planning and
manipulation.

B. Autonomous Trolley Collection Demonstration

Fig. 11: The position trajectory of the robot and the velocity
commands yielded by its motion planner.

Using the approaches described throughout this paper,
we demonstrate our system in an actual autonomous trolley
collection task. The robot is supposed to detect and localize
a target trolley, safely navigate itself to the trolley’s back,
catch the trolley with its manipulator, and finally carry it to
a designated returning spot. Our hardware setup is shown in
Fig. 2, and all the algorithms above were integrated with
the Robot Operating System (ROS) environment and run
in real time on the robot’s onboard computer with an i7-
1165G7 CPU and an NVIDIA GTX 2060 GPU. In the
demonstration shown in Fig. 9, we put the target trolley
at different locations with different orientations, far from
several initial locations of the robot, and let the robot perform

the collection autonomously. In the space between the robot
and the target trolley, we set up multiple static obstacles
to block the robot’s direct route to the goal. Fig. 11 shows
the position trajectory of the robot in the demonstration and
velocity commands produced by our planner over time. In
the velocity commands plot in Fig. 11, the first big crest
happens between t = 10s and t = 20s is caused by avoiding
the moving human in Fig. 9(a); the second crest at t = 27s
means the robot has passed the approaching stage and begins
docking (see Fig. 9(c)); and the sudden change at t = 39s
indicates the start of the return stage shown in Fig. 9(d).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a mobile manipulation system
for robotic autonomous trolley collection in complex and
dynamic environments. To detect target trolleys and estimate
their poses, the robot uses a learning-based 3D detection
method involving object and key points detection at long
distances, and adopts an accurate point cloud plane detection
method at short distances. For safe motion planning and con-
trol, we model this real-time task as an NMPC problem. With
CBFs, the obstacle avoidance and field-of-view maintaining
requirements are composed into the planning framework
as constraints. The incorporation of the novel design of
mechanical system and autonomy framework together with
the progressive perception and planning strategy forms an
efficient and robust robotic solution to autonomous trolley
collection. We demonstrate our system in hardware on an
actual trolley collection task with static obstacles and moving
humans. Experimental results reveal that our solution clearly
outperforms most state of the arts regarding the collection
task. Our future work will focus on developing global
decision-making strategies and multi-robot collaboration.

REFERENCES

[1] J. Wang and M. Q.-H. Meng, “Real-time decision making and path
planning for robotic autonomous luggage trolley collection at airports,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp.
1–10, 2021.

[2] H. Liu, P. Meusel, G. Hirzinger, M. Jin, Y. Liu, and Z. Xie, “The
modular multisensory DLR-HIT-Hand: Hardware and software archi-
tecture,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 4,
pp. 461–469, 2008.

[3] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru,
M. Wise, L. Mösenlechner, W. Meeussen, and S. Holzer, “Towards
autonomous robotic butlers: Lessons learned with the PR2,” in 2011
IEEE International Conference on Robotics and Automation. IEEE,
2011, pp. 5568–5575.

4485



[4] J. Pages, L. Marchionni, and F. Ferro, “TIAGo: The modular robot
that adapts to different research needs,” in International workshop on
robot modularity, IROS, 2016.

[5] C. Wang, X. Mai, D. Ho, T. Liu, C. Li, J. Pan, and M. Q.-H. Meng,
“Coarse-to-fine visual object catching strategy applied in autonomous
airport baggage trolley collection,” IEEE Sensors Journal, vol. 21,
no. 10, pp. 11 844–11 857, May 2021.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” Advances
in neural information processing systems, vol. 28, pp. 91–99, 2015.

[7] G. Jocher, A. Stoken, J. Borovec, NanoCode012, A. Chaurasia,
TaoXie, L. Changyu, A. V, Laughing, tkianai, yxNONG, A. Hogan,
lorenzomammana, AlexWang1900, J. Hajek, L. Diaconu, Marc,
Y. Kwon, oleg, wanghaoyang0106, Y. Defretin, A. Lohia, ml5ah,
B. Milanko, B. Fineran, D. Khromov, D. Yiwei, Doug, Durgesh,
and F. Ingham, “ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 models,
AWS, Supervise.ly and YouTube integrations,” Apr. 2021. [Online].
Available: https://doi.org/10.5281/zenodo.4679653

[8] J. Lin, H. Ma, J. Cheng, P. Xu, and M. Q.-H. Meng, “A monocular
target pose estimation system based on an infrared camera,” in
2019 IEEE International Conference on Robotics and Biomimetics
(ROBIO). IEEE, 2019, pp. 1750–1755.

[9] P. Li, H. Zhao, P. Liu, and F. Cao, “RTM3D: Real-time monocular 3D
detection from object keypoints for autonomous driving,” in European
Conference on Computer Vision. Cham: Springer, 2020, pp. 644–660.

[10] T. He and S. Soatto, “Mono3D++: Monocular 3D vehicle detection
with two-scale 3D hypotheses and task priors,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
8409–8416.

[11] J. Pan, X. Mai, C. Wang, Z. Min, J. Wang, H. Cheng, T. Li,
E. Lyu, L. Liu, and M. Q.-H. Meng, “A searching space constrained
partial to full registration approach with applications in airport trolley
deployment robot,” IEEE Sensors Journal, vol. 21, no. 10, pp. 11 946–
11 960, May 2021.

[12] J. Wang and M. Q.-H. Meng, “Path planning for nonholonomic
multiple mobile robot system with applications to robotic autonomous
luggage trolley collection at airports,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct. 2020, pp.
2726–2733.

[13] S. Yu, Y. Guo, L. Meng, T. Qu, and H. Chen, “MPC for path following
problems of wheeled mobile robots,” IFAC-PapersOnLine, vol. 51,
no. 20, pp. 247–252, 2018.

[14] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” in 2021 American
Control Conference (ACC), May 2021, pp. 3882–3889.

[15] J. Zeng, Z. Li, and K. Sreenath, “Enhancing feasibility and safety of
nonlinear model predictive control with discrete-time control barrier
functions,” arXiv:2105.10596, May 2021.

[16] S. He, J. Zeng, B. Zhang, and K. Sreenath, “Rule-based safety-
critical control design using control barrier functions with application
to autonomous lane change,” in 2021 American Control Conference
(ACC), 2021.

[17] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with Rao-Blackwellized particle filters,” IEEE Transac-
tions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[18] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localiza-
tion: Efficient position estimation for mobile robots,” AAAI/IAAI, vol.
1999, no. 343-349, pp. 2–2, 1999.

[19] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in European conference on computer vision.
Springer, 2016, pp. 483–499.

[20] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An accurate O(n)
solution to the PnP problem,” International Journal of Computer
Vision, vol. 81, no. 2, p. 155, 2009.

[21] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, p. 381–395,
Jun. 1981.

[22] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: A software framework for nonlinear optimization and opti-
mal control,” Mathematical Programming Computation, vol. 11, no. 1,
pp. 1–36, 2019.

[23] L. T. Biegler and V. M. Zavala, “Large-scale nonlinear programming
using IPOPT: An integrating framework for enterprise-wide dynamic
optimization,” Computers & Chemical Engineering, vol. 33, no. 3, pp.
575–582, 2009.

[24] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010. Heidelberg: Physica-
Verlag HD, 2010, pp. 177–186.

[25] D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimiza-
tion,” arXiv:1412.6980, 2014.

[26] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),”
in 2011 IEEE International Conference on Robotics and Automation,
2011, pp. 1–4.

4486


